

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

MICROZONAZIONE SISMICA Relazione Illustrativa MS Livello 1

Regione Sicilia

Comune di Randazzo

Convenzione in data 20/12/2011 tra il Dipartimento Regionale della Protezione Civile e l'Università degli Studi di Catania: *Indagini di Microzonazione sismica di Livello I in diversi Comuni della Regione Sicilia ai sensi dell'OPCM 3907/2010*

Indice

1. Introduzione
2. Definizione della pericolosità di base e degli eventi di riferimento11
3. Assetto geologico e geomorfologico dell'area23
4. Dati geotecnici e geofisici
5. Modello del sottosuolo
6. Interpretazioni e incertezze41
7. Metodologie di elaborazione e risultati45
8. Elaborati cartografici
9. Confronto con la distribuzione dei danni degli eventi passati
10. Bibliografia64
11. Allegati

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

1. Introduzione

Gli studi di microzonazione sismica (**MS**) condotti all'interno del territorio del Comune di Randazzo (codice istat 087038), in Provincia di Catania, oggetto della presente relazione, sono stati eseguiti nell'ambito della Convenzione del 20/12/2011 tra Università di Catania e Dipartimento Regionale di Protezione Civile della Regione Sicilia, che ha previsto l'avvio delle indagini per i comuni siciliani soggetti a più elevata pericolosità sismica. L'attività di microzonazione è stata eseguita seguendo le indicazioni contenute negli "Indirizzi e criteri per la microzonazione sismica" (Gruppo di lavoro MS, 2008) e tenendo conto anche dei suggerimenti contenuti nel supplemento a "Ingegneria Sismica" (anno XXVIII, n.2, 2011) a cura di Dolce et alii.

In generale, gli studi di MS mirano a valutare "*la pericolosità sismica locale* attraverso l'individuazione di zone del territorio caratterizzate da comportamento sismico omogeneo". In tale definizione per pericolosità sismica si intende la "stima quantitativa dello scuotimento del terreno dovuto a un evento sismico, in una determinata area. La pericolosità sismica può essere analizzata con metodi deterministici, assumendo un determinato terremoto di riferimento, o con metodi probabilistici, nei quali le incertezze dovute alla grandezza, alla localizzazione e al tempo di occorrenza del terremoto sono esplicitamente consideratt". La stima di pericolosità di una data regione si articola in un primo stadio che prevede l'analisi della **pericolosità sismica di base**, definita come "componente della pericolosità sismica dovuta alle caratteristiche sismologiche dell'area (tipo, dimensioni e profondità delle sorgenti sismiche, energia e frequenza dei terremoti)". In sostanza, la pericolosità sismica di base è direttamente riferibile ai parametri delle sorgenti sismiche i cui effetti possono avere risentimenti in un

determinato territorio, determinandone la sua storia sismica in termini di magnitudo e frequenza degli eventi sismici. La pericolosità sismica di base viene espressa parametrizzando il moto del suolo (velocità, accelerazione, intensità, ordinate spettrali), riferito all'evento massimo prevedibile in un determinato periodo di tempo, sulla base di un'analisi probabilistica con prefissati valori di eccedenza. I parametri descrivono lo "scuotimento prodotto dal terremoto in condizioni di suolo rigido e senza irregolarità morfologiche (terremoto di riferimento)". La pericolosità sismica di base si riferisce, quindi ad una classificazione sismica a vasta scala, utilizzabile per la "programmazione delle attività di prevenzione e alla pianificazione dell'emergenza", rappresentando la "base per la definizione del terremoto di riferimento per studi di microzonazione sismica." Ai fini della pianificazione del territorio e delle applicazioni nell'ambito degli strumenti di pianificazione urbanistica è necessario procedere ad un livello di conoscenza più dettagliato, mirato alla conoscenza degli effetti locali (o di sito), definiti come "*effetti* dovuti al comportamento del terreno in caso di evento sismico per la presenza di particolari condizioni lito-stratigrafiche e morfologiche che determinano **amplificazioni** locali e fenomeni di instabilità del terreno (instabilità di versante, liquefazioni, faglie attive e capaci, cedimenti differenziali, ecc.)". I fenomeni di amplificazione locale sono l'effetto della risposta sismica locale, definita come "modificazione in ampiezza, frequenza e durata dello scuotimento sismico dovuta alle specifiche condizioni litostratigrafiche e morfologiche di un sito", generalmente espresso in termini quantitativi dal rapporto tra i parametri del moto sismico alla "superficie del sito e quello che si osserverebbe per lo stesso evento sismico su un ipotetico affioramento di roccia rigida con morfologia orizzontale". I fenomeni di instabilità comprendono tutte le "modificazioni permanenti del terreno dovuti ad un evento sismico" capaci di produrre danni in aggiunta a quelli legati all'oscillazione del suolo. Tutti gli aspetti connessi alle condizioni locali del sito sono oggetto proprio dell'analisi di pericolosità sismica locale, definita come "componente della pericolosità sismica dovuta alle caratteristiche locali".

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Gli studi di microzonazione sismica hanno l'obiettivo di suddividere un territorio in zone caratterizzate da differenti comportamenti in caso di evento sismico andando a classificare le diverse zone in tre categorie principali di comportamento:

- le zone stabili in cui il moto sismico non viene modificato rispetto a quello atteso in condizioni ideali di roccia rigida e pianeggiante. In queste zone gli scuotimenti attesi sono equiparati a quelli forniti dagli studi di pericolosità di base;
- 2. le **zone stabili suscettibili di amplificazione** in cui il moto sismico viene modificato rispetto a quello atteso in condizioni ideali di roccia rigida e pianeggiante, a causa delle caratteristiche litostratigrafiche e/o morfologiche del terreno del territorio;
- 3. le **zone suscettibili di instabilità** in cui sono presenti o si possono ipotizzare attivazioni di fenomeni di deformazione permanente del territorio indotti o innescati dal sisma (instabilità di versante, liquefazioni, fagliazione superficiale, cedimenti differenziali, ecc.).

Gli studi di microzonazione sismica si articolano in 3 distinti livelli di approfondimento, ognuno dei quali mirati a stati di conoscenza più dettagliati con obiettivi modulati in sequenza, di seguito definiti:

- *il livello* 1 rappresenta un livello propedeutico alla MS e consiste in una raccolta dei dati preesistenti, elaborati per suddividere il territorio in microzone con caratteri litostratigrafici e morfologici qualitativamente omogenei, tali da determinare un comportamento classificabile in una delle 3 categorie sopra descritte. Il prodotto finale del livello è la "Carta delle microzone omogenee in prospettiva sismica".
- *il livello 2 ha lo scopo di definire quantitativamente il comportamento delle zone omogenee definite nel primo livello, determinando una serie di parametri numerici*

caratteristici del moto del suolo in ciascuna microzona. Il secondo livello di approfondimento può avvalersi di ulteriori e mirate indagini, ove necessarie. Il prodotto finale del secondo livello di approfondimento è la Carta di microzonazione sismica.

- *il livello 3* restituisce una Carta di microzonazione sismica con approfondimenti su tematiche o aree particolari di un territorio il cui comportamento non può essere esaustivamente parametrizzato con i precedenti livelli di approfondimento. In questo caso si fa riferimento ai risultati di ulteriori studi originali di approfondimento opportunamente progettati in funzione della problematica specifica da affrontare.

Gli studi condotti nel territorio di Randazzo si riferiscono al primo livello di approfondimento e sono consistiti nella raccolta dei dati esistenti e nella redazione di una serie di elaborati cartografici (Carta delle indagini, la Carta geologico tecnica per la MS e la Carta delle microzone omogenee in prospettiva sismica) richiesti dagli "Indirizzi e criteri per la microzonazione sismica" (Gruppo di lavoro MS, 2008) e nella compilazione di un database, risultato di una profonda e dettagliata elaborazione delle informazioni esistenti. Il territorio del Comune di Randazzo si sviluppa lungo il basso versante nordoccidentale del Monte Etna in Sicilia orientale con un estensione areale di circa 204 km² (Fig. 1). In mancanza di indicazioni da parte del Comune, si è stabilito, in accordo con il Dipartimento Regionale della Protezione Civile, di limitare gli studi di microzonazione sismica di I livello alle aree comprese tra il centro storico e la Frazione di Murazzo Rotto a Sud del Vallone della Gurrida e della valle dell'Alcantara, con un estensione areale di 4,65 Km², come da verbale della riunione tecnica del 24/04/2012 tra l'Università di Catania e il Dipartimento Regionale di Protezione Civile. Lo studio di MS di livello 1 è stato effettuato utilizzando come base cartografica la Carta Tecnica Regionale alla scala 1:10.000, realizzata dalla Regione Sicilia nel 2008. In particolare l'area di studio ricade all'interno delle Sezioni CTR 612110 e 612120 (Fig. 1).

6

Regione Siciliana – Presidenza Dipartimento della Protezione Civile

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Fig. 1 – Ubicazione dell'area in cui sono stati effettuati gli studi di MS di livello 1 (delimitata in rosso), corrispondente al centro abitato di Randazzo, all'interno delle Sezioni CTR 612110 e 612120.

La qualità e l'affidabilità dei risultati sono state chiaramente influenzati dalla disponibilità di dati significativi sui quali operare. Nel caso specifico, per il Comune di Randazzo è stato possibile attingere ad una quantità modesta d'informazioni pregresse, la maggior parte delle quali sono ubicate in una ristretta area situata a nord-ovest del centro abitato principale, e secondariamente in una limitata area ad est di quest'ultimo. Seppure non omogeneamente distribuiti, i dati raccolti hanno permesso di vincolare la successione stratigrafica dell'area e consentito una sufficiente ricostruzione 3D delle successioni. E' ovvio che livelli di indeterminazione permangono per quanto attiene lo spessore dei terreni di copertura e la reale profondità del substrato rigido nelle aree prive di dati di sottosuolo diretto. In questo caso si è fatto riferimento a proiezioni dei dati disponibili in aree limitrofe, sulla base di una scrupolosa interpretazione delle evidenze di superficie, nella previsione di infittire le indagini nei successivi stadi di approfondimento.

I dati messi a disposizione dall'amministrazione comunale di Randazzo, relativi sia ad indagini effettuate per lo studio geologico a supporto del Piano Regolatore Generale (P.R.G.), sia ad indagini effettuate a supporto della progettazione di opere pubbliche e di interventi di riqualificazione urbana, sono sintetizzati in diversi elaborati di seguito elencati:

Studio geologico a supporto del P.R.G.:

- Tavole 1, 2, 3, 4, 5: Carta Geomorfologica in scala 1:2.000
- Tavola 1, 2, 3, 4, 5: Carta del rischio vulcanico e del rischio idrogeologico in scala
 1:2.000
- Indagini geognostiche e geofisiche a supporto del progetto di revisione del P.R.G. di cui:
 - n. 7 sondaggi geognostici
 - n. 4 Down-hole con annessa documentazione fotografica
- Ubicazione indagini geognostiche in scala 1:10.000

Progetto esecutivo per la riqualificazione urbana della Via Duca degli Abruzzi:

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

- Studio geologico esecutivo: Relazione geologica
- Corografia in scala 1:10.000
- Carta ubicazione indagini geognostiche in scala 1:2.500
- Carta Geologica in scala 1:4.000
- Sezione geolitologica

Progetto dei lavori di costruzione della Pretura:

- Relazione geologica
- Corografia in scala 1:10.000
- Stralcio rilievo aerofotogrammetrico in scala 1:2.000
- Carta Geologica in scala 1:10.000
- Indagini e prove in situ :

pozzetti esplorativi

Indagini sismiche a rifrazione

Tavola I: sito della pretura di Randazzo

Tavola II: sito della pretura di Randazzo con stese sismiche

<u>Studio geologico relativo al progetto dei lavori della nuova sede dislocamento di vigili del</u> <u>fuoco:</u>

- Relazione geologico-tecnica

- Allegato 1: Carta litologica in scala 1:10.000

- Allegato 2: Sezione geologico-tecnica

- Allegato 3: Ubicazione delle indagini eseguite in scala 1:1.000

I dati messi a disposizione, sono stati successivamente analizzati e archiviati secondo gli "Standard di rappresentazione e archiviazione informatica Versione 2.0beta-II".

I dati pregressi sono stati integrati da verifiche di terreno e analisi di aerofotogrammetrie, mirate alla verifica della affidabilità del modello geologico proposto. Infine, sono state effettuate una serie di misure di microtremori mediante la tecnica di indagine di sismica passiva HVSR (Horizontal to Vertical Spectral Ratio) al fine di determinare il periodo e l'ampiezza delle vibrazioni del suolo, su una griglia di punti omogeneamente distribuiti sull'area investigata, utilizzati per la redazione di una carta delle frequenze. Per il presente studio, inoltre, sono stati consultati diversi archivi, sia per verificare l'eventuale presenza di instabilità (PAI Regione Sicilia, Progetto IFFI, Progetto Sinkhole, Pubblicazioni scientifiche), che le caratteristiche sismotettoniche (Progetto Ithaca, DISS3) e di sismologia storica e macrosismica (CPTI11, DBMI11, CFTI), oltre alla cartografia geologica (AA.VV., 1979, 2012; Monaco et al., 2008; Catalano & Tortorici, 2010) e idrogeologica (Ferrara, 2001) disponibile in Letteratura.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

2. Definizione della pericolosità di base e degli eventi di riferimento

Nel presente capitolo viene definita la pericolosità sismica del Comune di Randazzo in provincia di Catania, con riferimento alla storia sismica del Comune medesimo, alla sua catalogazione nelle mappe di pericolosità sismica ed alle eventuali sorgenti sismogenetiche presenti nei dintorni e nelle zone limitrofe. Per quanto concerne la catalogazione del territorio di Randazzo (CT) sulle mappe di pericolosità sismica si farà esplicito riferimento alle indicazioni ed alle prescrizioni dettate dall'attuale testo normativo vigente (Nuove Norme Tecniche per le Costruzioni NTC – approvate con D.M. 14/01/2008 e pubblicate sulla G.U. n. 29 in data 04/02/2008) che si assume a base del progetto.

E' stata effettuata l'individuazione del Comune di Randazzo sui cataloghi sismici, facendo riferimento in particolare al Catalogo Parametrico dei terremoti italiani (CPTI11; Rovida et al., 2011), che nella fattispecie si riferisce al database macrosismico (DBMI11; Locati et al., 2011) e su una base di dati strumentali molto ampia ed aggiornata. Il catalogo parametrico CPTI11 si compone di due sezioni, una delle quali dedicata ai terremoti etnei (1000–2006). Quest'ultima contiene 198 terremoti localizzati all'interno della zona 936 della zonazione sismogenetica ZS9 (Meletti et al., 2008) relativi al periodo 1000–2006. Le soglie energetiche della sezione terremoti etnei sono lo = 5–6 e Mw = 3.5. Per tutti i terremoti della sezione, il valore di Mw e la relativa incertezza sono ottenuti dal valore di lo mediante la relazione di Azzaro et al. (2011). DBMI11 contiene dati di intensità relativi a 1681 terremoti che fanno parte di CPTI11 (Rovida et al., 2011), e in particolare relativi a: a) 1484 terremoti i cui dati sono stati utilizzati per determinare i parametri che fanno parte di CPTI11; b) 197 terremoti etnei, i cui dati non sono utilizzati

per determinare i parametri che fanno parte di CPTI11, in quanto i relativi parametri sono stati adottati direttamente dal Catalogo Macrosismico dei Terremoti Etnei (CMTE; http://www.ct.ingv.it/ufs/macro; Azzaro et al., 2000; 2006; 2009). Tra gli eventi sismici di maggiore rilevanza sicuramente si può annoverare il terremoto della Val di Noto dell'11 Gennaio 1693, che è quello che più si è impresso nella memoria storica locale dell'intera Sicilia per molte ragioni: la vastità dell'area colpita, la gravità degli effetti, i mutamenti subiti da una intera rete insediativa e infine la straordinaria capacità progettuale che caratterizzò la fase di ricostruzione. Questo disastro sismico costituisce quindi un importante episodio nella storia del popolamento e dell'urbanistica siciliana, nonché un evento di grande interesse per la storiografia e per la sismologia. In figura 2 si riportano i valori dell'intensità macrosismica dell'evento; il Comune di Randazzo viene catalogato con intensità VIII MCS (Barbano, 1985). La figura 3 riporta il risultato della ricerca sul database DBMI11, che individua 65 eventi significativi per il territorio di Randazzo, a partire dall'evento del 1693. La figura 4 riporta il conseguente grafico relativo alla sismicità storica del comune di Randazzo.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Locality	MCS	Locality	MCS
Acate (Biscari)	Х	Massannunziata	Х
Aci Bonaccorsi	Х	Mazzarino	VII
Aci Castello	Х	Melilli	XI
Aci La Consolazione	Х	Messina	VIII
Acireale	Х	M. Etna	VIII-IX
Aci San Filippo	Х	Militello in Val di Catania	IX
Aci Sant'Antonio	Х	Mineo	Х
Aci Trezza	Х	Misterbianco	Х
Agrigento (Girgenti)	VI	Modica	IX
Aidone	Х	Monterosso Almo	Х
Augusta	Х	Motta S. Anastasia	Х
Avola	Х	Naso	VI
Belpasso (Fenicia)	IX	Nicosia	VII-VIII
Biancavilla (Li Greci)	VIII	Niscemi	VIII-IX
Borrello	Х	Noto	XI
Bronte	VI- VII	Oriolo	NF
Buccheri	Х	Pachino	IX
Butera	VI - VII	Palagonia	IX
Calatabiano	VIII – IX	Palazzolo Acreide	Х
Calatafimi	VII	Palermo	VII
Caltagirone	VIII – IX	Paternò	VIII-IX
Caltanissetta	VI	Patti	VI-VII
Capomulini	Х	Pedara	Х
Carlentini	XI	Piazza Armerina	VII
Cassaro	XI	Plachi	Х
Castiglione di Sicilia	VIII	Ragusa	IX-X
Catania	Х	Randazzo	VII-VIII
Centuripe (Centorbiy)	VIII	Reggio Calabria	VI
Chiaramonte Gulfi	Х	San Giovanni La Punta	Х
Comiso	VIII	San Gregorio	Х
Ferla	XI	San Michele di Ganzeria	VIII
Fiumefreddo	IX	Sant'Agata li Battiati	Х
Floridia	Х	Sciacca	NF
Francavilla	VIII-IX	Scicli	Х
Francofonte	Х	Scordia	IX
Gela	VII	Siracusa	Х
Giarratana	Х	Sortino	XI
Grammichele (Occhiolà)	Х	Taormina	IX
Ispica (Spaccaforno)	IX	Trapani	NF
Lentini	XI	Trecastagni	Х
Licata	VII	Tremestieri	Х
Licodia Eubea	IX	Troina	VII-VIII
Linguaglossa	VIII-IX	Valverde	X
Lipari	VI	Viagrande	Х
Malta	VIII	Villa San Giovanni	VII
Mascali	IX	Vittoria	VIII
Mascalucia	Х	Vizzini	IX

Fig. 2 – Intensità macrosismica delle località colpite dal terremoto della Val di Noto dell'11 gennaio 1693, da Barbano (1985).

_	~	~				
- HC	÷.	÷.	ρ	÷.	÷.	п.
	-	-	~	~	5	-

I[MCS]	Data	Ax	Np	Io Mw
5-6	<u>1566 11 30</u>	RANDAZZO	2	4-5 4.09 ±0.34
5	<u>1693 01 09 21:00</u>	Val di Noto	30	8-9 6.21 ±0.31
8	<u>1693 01 11 13:30</u>	Sicilia orientale	185	11 7.41 ±0.15
F	<u>1739 05 10 15:25</u>	Naso	б	8 5.13 ±0.44
6-7	<u>1783 02 05 12:00</u>	Calabria	356	11 7.02 ±0.08
8	1818 02 20 18:15	Catanese	128	9-10 6.23 ±0.12
4-5	<u>1883 04 05 08:58</u>	NICOLOSI	11	6 3.71 ±0.26
5	1884 01 10 20:35	VERSANTE SETTENTRIONALE	14	5 4.39 ±0.34
4	1886 06 05 11:13	S. VENERINA	21	6-7 3.94 ±0.26
3	1892 03 16 12:38	ALICUDI	28	7 5.29 ±0.31
4-5	1892 07 08 18:50	VERSANTE MERIDIONALE	13	7 4.16 ±0.26
4	<u>1893 04 01 07:09</u>	ZAFFERANA ETNEA	8	6 3.71 ±0.26
5	<u>1893 04 22 03:20</u>	MONTALBANO	33	6-7 4.87 ±0.28
5	<u>1894 02 20</u>	NOVARA DI SICILIA	16	5 4.28 ±0.36
3-4	<u>1894 08 08 05:16</u>	MAZZASETTE	45	8-9 4.84 ±0.26
4-5	<u>1894 11 16 17:52</u>	Calabria meridionale	303	9 6.07 ±0.10
3-4	1898 05 14 04:45	S. M. LICODIA	35	7-8 4.39 ±0.26
4	1898 08 12	ROMETTA	69	6-7 4.89 ±0.22
5	<u>1905 09 08 01:43</u>	Calabria meridionale	895	7.04 ±0.16
NF	<u>1906 06 02 00:10</u>	MASSA ANNUNZIATA	19	6 3.71 ±0.26
NF	<u>1907 12 07 21:28</u>	FIANDACA	24	7-8 4.39 ±0.26
4	<u>1908 05 26 16:47</u>	VERSANTE ORIENTALE	15	5-6 3.49 ±0.26
5-6	<u>1908 12 10 06:20</u>	NOVARA DI SICILIA	64	7 5.13 ±0.26
NF	<u>1913 06 28 08:5</u>	Calabria settentrionale	151	8 5.66 ±0.14
5	<u>1914 05 08 18:01</u>	LINERA	82	9-10 5.29 ±0.26
3	<u>1923 11 15 20:00</u>	PIEDIMONTE ETNEO	14	6 3.71 ±0.26
5	<u>1936 10 08 08:04</u>	Patti	16	4.84 ±0.20
NF	<u>1947 05 11 06:3</u>	Calabria centrale	254	8 5.70 ±0.13

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

NF	<u>1957 03 03 09:27</u>	ZAFFERANA ETNEA	18	6 3.71 ±0.26
3	<u>1961 03 24 10:36</u>	ASPROMONTE	59	5-6 4.79 ±0.28
2	<u>1975 01 16 00:0</u>	Stretto di Messina	346	7-8 5.20 ±0.09
3	<u>1977 06 05 13:5</u>	MISTRETTA	108	6 4.72 ±0.11
2-3	<u>1978 03 11 19:2</u>	Calabria meridionale	126	8 5.24 ±0.09
5-6	<u>1978 04 15 23:3</u>	Golfo di Patti	332	6.06 ±0.09
3	<u>1980 11 23 18:3</u>	Irpinia-Basilicata	1394	10 6.89 ±0.09
NF	<u>1982 07 06 14:37</u>	C.DA ALGERAZZI	150	6-7 3.94 ±0.26
2-3	<u>1983 07 20 22:03</u>	VIAGRANDE	106	7 4.16 ±0.26
3	<u>1984 10 18 11:58</u>	PIANO PERNICANA	15	6 3.71 ±0.26
NF	<u>1984 10 19 17:43</u>	ZAFFERANA ETNEA	124	7 4.16 ±0.26
NF	<u>1984 10 25 01:11</u>	FLERI	122	8 4.61 ±0.26
4	<u>1985 06 13 21:1</u>	ADRANO	57	5-6 4.51 ±0.34
4	<u>1985 12 25 02:39</u>	PIANO PROVENZANA	20	7 4.16 ±0.26
NF	<u>1986 10 29 23:18</u>	PIANO PROVENZANA	74	7 4.16 ±0.26
3	<u>1986 11 03 06:32</u>	C.DA ALGERAZZI	86	6 3.71 ±0.26
4-5	<u>1987 08 13 07:22</u>	MALETTO	35	5-6 3.49 ±0.26
3-4	<u>1988 10 28 18:48</u>	PIANO PERNICANA	66	6 3.71 ±0.26
4	<u>1989 07 27 15:08</u>	CASELLE	55	5-6 3.49 ±0.26
5	<u>1990 12 13 00:2</u>	Sicilia sud-orientale	304	7 5.64 ±0.09
4	<u>1997 12 24 09:40</u>	VERSANTE MERIDIONALE	11	5-6 3.49 ±0.26
4	<u>1998 01 10 08:45</u>	VERSANTE SUD-OCCIDENTALE	44	6 3.71 ±0.26
4	<u>1999 02 14 11:4</u>	Patti	101	4.69 ±0.09
4	<u>1999 08 05 14:57</u>	VERSANTE SUD-OCCIDENTALE	35	5-6 3.49 ±0.26
NF	<u>1999 12 26 14:19</u>	C.DA ILICE	43	5-6 3.49 ±0.26
NF	2000 01 11 08:20	SANT'ALFIO	39	5-6 3.49 ±0.26
NF	2001 01 09 02:51	ZAFFERANA ETNEA	104	6 3.71 ±0.26
4	2001 04 22 13:56	VERSANTE OCCIDENTALE	55	5-6 3.49 ±0.26

NF	2002 03 24 23:05	VERSANTE ORIENTALE	40	5-6 3.49 ±0.26
4	2002 09 06 01:2	PALERMO	132	5.94 ±0.09
4	2002 09 22 16:01	PIANO PROVENZANA	35	6 3.71 ±0.26
5	2002 10 27 02:50	PIANO PROVENZANA	17	8 4.61 ±0.26
NF	2003 02 13 05:32	PIANO PERNICANA	4	6 3.71 ±0.26
NF	2003 06 01 10:32	PIANO PERNICANA	17	6-7 3.94 ±0.26
3-4	2004 07 22 02:11	VERSANTE ORIENTALE	34	6 3.71 ±0.26
NF	2005 10 31 00:02	TRECASTAGNI	32	6 3.71 ±0.26
4-5	2006 05 20 07:05	VERSANTE SUD-OCCIDENTALE	27	5-6 3.49 ±0.26

Fig. 3 – Eventi sismici significativi per il Comune di Randazzo dal database DBMI11. IMCS = intensità macrosismica espressa in scala MCS; Ax = area epicentrale geografica in cui sono stati riscontrati i maggiori effetti del terremoto; Np= numero di punti, numero di osservazioni macrosismiche disponibili per il terremoto; Io = Intensità macrosismica epicentrale, da CPTI11, espressa in scala MCS, Mercalli-Cancani-Sieberg; Mw = magnitudo momento.

Fig. 4 - Grafico relativo alla sismicità storica del comune di Randazzo.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Catalogazione del Comune di Randazzo sulla mappa interattiva di pericolosità sismica

Il Consiglio Superiore dei Lavori Pubblici ha stabilito, approvato ed emesso in data 27/07/2007 il documento "pericolosità sismica e criteri per la classificazione sismica del territorio nazionale" con il quale è stata ridefinita la mappatura sismica. La nuova mappatura sismica nazionale consiste in un dettagliato reticolo di riferimento individuato su maglia quadrata di lato 10 km; per ogni punto del reticolo si conoscono le accelerazioni massime attese al bedrock per diversi periodi di ritorno dell'evento sismico. La mappa interattiva di pericolosità sismica (Meletti & Montaldo, 2007) su reticolo è attualmente disponibile su http://esse1.mi.ingv.it; è altresì disponibile in allegato alle nuove norme tecniche per le costruzioni (D.M. 14/01/2008) la tabella di riferimento che riporta puntualmente i parametri sismici di progetto al variare del periodo di ritorno dell'evento sismico di progetto. Le mappe riportano due parametri dello scuotimento: a(g) (accelerazione orizzontale massima del suolo, corrispondente a quella che in ambito internazionale viene chiamata PGA) e Se(T) (Spettro di risposta Elastico in funzione del periodo T, in accelerazione). Le mappe in a(g) sono state calcolate per differenti probabilità di superamento in 50 anni (in totale 9, dal 2% all'81%). Per ogni stima è disponibile la distribuzione del 50mo percentile (mappa mediana, che è la mappa di riferimento per ogni probabilità di superamento) e la distribuzione del 16mo e dell'84mo percentile che indicano la variabilità delle stime. Le mappe in Se(T) sono state pure calcolate per le stesse probabilità di superamento in 50 anni (in totale 9, dal 2% all'81%) e per differenti periodi (in totale 10, da 0.1 a 2 secondi). Anche in questo caso per ogni stima è disponibile la distribuzione del 50mo percentile (mappa mediana, che è la mappa di riferimento per ogni probabilità di superamento) e la distribuzione del 16mo e dell'84mo percentile che indicano la variabilità delle stime.

L'area di studio del Comune di Randazzo è univocamente individuata dalle coordinate geografiche internazionali:

LATITUDINE: 37.878 N

LONGITUDINE: 14.945 E

Tale punto coincide perfettamente con uno dei punti del reticolo di riferimento e per esso sono noti direttamente i valori delle accelerazioni al suolo di progetto per diversi tempi di ritorno. La Figura 5 riporta la probabilità di eccedenza in 50 anni del valore di PGA riportato sulle mappe interattive di pericolosità sismica, il corrispondente periodo di ritorno e la corrispondente frequenza annuale di superamento. Sono state elaborate carte di pericolosità sismica in termini di ag su suolo rigido (categoria A; Vs₃₀>800 m/sec) con probabilità di superamento in 50 anni pari a: 81%, 63%, 50%, 39%, 30%, 22%, 5% e 2% rispettivamente corrispondenti a periodi di ritorno di 30, 50, 72, 100, 140, 200, 975 e 2475 anni (convenzionalmente per gli ultimi due periodi di ritorno si usa parlare di 1000 e 2500 anni). Si riportano nelle Figure 6–8 rispettivamente le mappe interattive di pericolosità sismica del territorio di Randazzo con riferimento al valore di PGA per una probabilità di eccedenza in 50 anni del 10%, del 5% e del 2%.

Probabilità di eccedenza in 50 anni	Corrispondente periodo di ritorno	Corrispondente frequenza annuale di superamento
81%	30	0.0332
63%	50	0.0199

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

50%	72	0.0139
39%	101	0.0099
30%	140	0.0071
22%	201	0.0050
10%	475	0.0021
5%	975	0.0010
2%	2475	0.0004

Fig. 5 – Probabilità di eccedenza in 50 anni del valore di PGA riportato sulle mappe interattive di pericolosità sismica, il corrispondente periodo di ritorno e la corrispondente frequenza annuale di superamento.

Fig. 6 – Mappa interattiva di pericolosità sismica del territorio di Randazzo. I punti della griglia visualizzati si riferiscono a: parametro dello scuotimento a(g), probabilità di superamento del 10% in 50 anni.

Fig. 7 – Mappa interattiva di pericolosità sismica del territorio di Randazzo. I punti della griglia visualizzati si riferiscono a: parametro dello scuotimento a(g), probabilità di superamento del 5% in 50 anni.

Fig. 8 – Mappa interattiva di pericolosità sismica del territorio di Randazzo. I punti della griglia visualizzati si riferiscono a: parametro dello scuotimento a(g), probabilità di superamento del 2% in 50 anni.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

I risultati ottenuti per il territorio di Randazzo vengono sintetizzati nella tabella 1 di seguito riportata e consentono di calcolare la curve di pericolosità sismica al sito (Figura 9).

T _R [anni]	a _g [g/10]
475	0.175-0.200
975	0.225-0.250
2475	0.350-0.400

Tabella 1. Valori di ag al sito e corrispondente periodo di ritorno.

Fig. 9 – Curva di pericolosità sismica al sito per il territorio di Randazzo. La curva rappresenta il valore della mediana.

Il territorio del Comune di Randazzo è stato individuato sul database DBMI11 (con 65 eventi sismici significativi tra il 1566 ed il 2006) con una intensità macrosismica espressa nella scala MCS che raggiunge il suo valore massimo in MCS = VIII in corrispondenza del terremoto della Val di Noto del 1693. La localizzazione territoriale sulle mappe interattive di pericolosità sismica ha consentito di ricavare i valori di a_g su suolo rigido (categoria A; Vs₃₀>800 m/sec) con probabilità di superamento in 50 anni pari a: 0.175-0.200 per il 10%, 0.225-0.250 per il 5% e 0.350-0.400 per il 2%, rispettivamente corrispondenti a periodi di ritorno di 475, 975 e 2475 anni. Ciò ha permesso di ricavare la curva di pericolosità sismica al sito per il territorio di Randazzo.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

3. Assetto geologico e geomorfologico dell'area

Il territorio di Randazzo è ubicato alla periferia settentrionale dell'Etna, lungo il margine tra le vulcaniti e le unità del substrato sedimentario, marcato dalla presenza del corso d'acqua del Fiume Alcantara. L'area di studio ricade quasi interamente sulle aree vulcaniche in destra orografica, comprendendo anche le zone della frazione di Murazzo Rotto, al di fuori della Valle dell'Alcantara.

Fig. 10 - Stralcio della Carta geologica del Monte Etna (AA.VV., 1979 mod).

Secondo la "Carta geologica del Monte Etna" alla scala 1:50000 (AA.VV., 1979; Fig. 10) l'area di Randazzo sarebbe costituita in gran parte da lave oloceniche e protostoriche (**Ipn, lpd, lpr** in Fig. 10) riferite all'attuale strato vulcano (Mongibello Recente <15 ka; Gillot et al., 1994) che raggiunto il fronte montuoso che delimita la dorsale nebrodica, dove sono esposte le unità del substrato sedimentario, sono state deviate in direzione

dell'attuale Valle del Fiume Alcantara. Verso est, le lave oloceniche, secondo la carta, sono confinate dalle lave alcaline antiche (**Ita** in Fig. 10; 168–100 ka; Gillot et al., 1994), che costituiscono un alto morfologico modellato da diversi ordini di terrazzi fluviali, ad est dell'abitato. Secondo la carta, dunque, le lave oloceniche avrebbero riempito una valle approfonditasi al contatto tra lave alcaline antiche e substrato sedimentario.

Fig. 11 - Stralcio della Carta Geologica del Vulcano Etna (Branca et al., 2011).

La Carta Geologica del Vulcano Etna (Branca et al., 2011) propone una datazione di dettaglio dei prodotti vulcanici affioranti nell'area di Randazzo. I diversi flussi lavici che costituiscono il substrato dell'abitato (m^I, zg^I, lr^I in Fig. 11) sono stati riferiti all'intervallo cronologico 15-4 ka, corrispondenti alle prime fasi dell'attività del vulcano Mongibello. Secondo la nuova carta, queste lave che raggiungono il fondovalle del Fiume Alcantara, sono incastrate all'interno di depositi vulcanoclastici (23b in Fig. 11) di età anteriore ai 15 ka. Tali rapporti vincolano quindi l'esistenza di una superficie di erosione fortemente incisa all'incirca riferibile a 15 ka, molto probabilmente coincidente con le fasi di deglaciazione post-wurmiane. Le lave della frazione di Murazzo Rotto, invece, sono state

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 assegnate ad una eruzione avvenuta intorno al 950 d.C.. Lave di età protostorica, riferite all'intervallo cronologico tra 4ka e il 122 a.C., lambiscono il limite orientale di Randazzo.

La Carta Morfotettonica dell'Etna (Monaco et al., 2008) e la Carta vulcano-tettonica dell'Etna (Azzaro et al., 2013) evidenziano entrambe l'assenza di elementi tettonici recenti o attivi nelle aree prossime all'abitato di Randazzo. Ciò è anche confermato dal Catalogo Macrosismico dei Terremoti Etnei dal 1832 al 2005 (Azzaro et al., 2000, 2009)(Fig. 12) che evidenzia l'assenza di eventi sismici storici nell'area di Randazzo. Questa ha risentito di eventi originatisi lungo sorgenti distanti dall'abitato.

Fig. 12 - Carta sismo-tettonica del Monte Etna riportata nel Catalogo Macrosismico dei Terremoti Etnei dal 1832 al 2005 (Azzaro et al., 2000, 2009).

Tali eventi possono essere riferiti alle strutture del fianco orientale e meridionale dell'Etna (Fig. 12) o ad una delle sorgenti censite nel DISS (Database of Individual Seismogenic Sources) Version 3.1.1 (DISS Working Group 2010)(Fig. 13). Tra quelle censite nel database, la sorgente sismogenica più rilevante nelle vicinanze all'abitato di Randazzo sarebbe quella denominata ITIS013 – Messina Straits, ubicata lungo la costa ionica della Sicilia nord-orientale e associata all'evento sismico di Messina del 1908

I parametri geometrici e cinematici, significativi per valutare il potenziale della sorgente sono riportati nella scheda di Fig. 14.

Fig. 13 - Ubicazione delle sorgenti sismogeniche prossime all'area comunale di Randazzo (in rosso) (DISS Working Group 2010, mod.).

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Nello stesso database, è riportata la presenza di una sorgente sismogenica, classificata come dibattuta e catalogata con il nome ITDS008 – Taormina (Fig. 13), in quanto segnalata nella Letteratura geologica (Catalano & De Guidi, 2003; De Guidi et al., 2003; Catalano et al., 2008) quale possibile sorgente di terremoti storici (853 A.D.) ed un elevato potenziale, comparabile con quello assegnato alla sorgente ubicata nello Stretto di Messina.

	DISS 3.1.1:	Seism	ogenic Source	e ITIS013 - Messina Strait	s 🏹		
Source Info Sum	mary <u>C</u>	ommenta	ary	References	Pictures		
			General infor	mation			
Code	ITIS013						
Name	Messina Straits						
Compiled By	Valensise, G., R. Bas	ili, and P	P. Burrato				
Latest Update	26/03/2009						
			Parametric info	rmation			
	Parameter	Qual	. Evidence				
Location (Lat/Lon)	38.0645 / 15.6082	LD	Based on geolo	igical geodetic and seismologi	cal data from various authors.		
Length (km)	40	LD	Based on geolo	gical, geodetic and seismologi	cal data from various authors		
Width (km)	20	LD	Based on various geological geodetic and seismological data				
Min Depth (km)	3	LD	LD Based on various geological, geodetic and seismological data.				
Max Depth (km)	12.7	LD	LD Derived from dip, width and min depth.				
Strike (deg)	20	LD	LD Based on geological, geodetic and seismological data from various authors.				
Dip (deg)	29	LD	D Based on geological, geodetic and seismological data from various authors.				
Rake (deg)	270	LD	Based on geological, geodetic and seismological data.				
Slip Per Event (m)	1.42	LD	Estimated from	geodetic data.			
Slip Rate (mm/y)	0.93 - 2	LD	Based on geod	etic data and estimated recurre	ence interval.		
Recurrence (y)	710 - 1527	LD	Based on mode	eling of marine terraces.			
Magnitude (Mw)	7	LD	Estimated from	geodetic data.			
Q-keys:	LD = Literature Data; Expert Judgement	OD = Or	iginal Data; ER =	Empirical Relationship; AR =	Analytical Relationship; EJ =		
			Associated ear	thquake			
Latest Eq	28 Dec 1908		CPTI04.				
Penultimate Eq	300-400 A.D.		See "Commenta	ary" for information.			
Elapsed Time	92		As of year 2000	(assigned datum).			

Fig. 14 - Scheda classificativa della sorgente sismogenica ITISO13 - Messina Straits del Diss 3.1.1 (DISS Working Group 2010, mod.).

La successione geolitologica affiorante nel territorio comunale Randazzo è stata ricostruita sulla base di un rilievo geologico originale finalizzato a risolvere tutte le incongruenze evidenziate dalla comparazione tra i diversi documenti cartografici pregressi e per sopperire alla mancanza di una carta geologica di dettaglio e delle informazioni relative agli studi condotti nelle fasi di redazione del PRG. L'unico documento a disposizione, a supporto dei presenti studi, è rappresentato dalla Carta geomorfologica in scala 1:2.000, utilizzata per l'individuazione delle aree di affioramento delle formazioni superficiali e della distribuzione dei suoli di alterazione degli orizzonti lavici più antichi (Fig. 15).

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 Fig. 15 – Carta geomorfologica in scala 1:2.000 (Tav. 1, 2, 3) relativa allo studio geologico a supporto del PRG del Comune di Randazzo.

Nella carta geologico tecnica per gli studi di microzonazione sismica le unità riconosciute sono state rappresentate seguendo gli "Standard di rappresentazione e archiviazione informatica-Versione 2.0beta-II", per quel che riguarda le tipologie già codificate, mentre si è fatto ricorso per la prima volta alle nuove suddivisioni dei terreni vulcanici, secondo una nuova codifica di campi concordata con il Dipartimento di Protezione Civile Nazionale e Regionale. Questa prevede l'attribuzione dei prodotti lavici alternativamente al substrato geologico, indicandoli come alternanza di strati, o alle coperture, catalogandoli in funzione della geometria e della giacitura in rapporto ai terreni sedimentari.

Substrato Geologico

Il substrato geologico affiorante è di natura non rigida (NR) essendo costituito dalle argille scagliose delle unità sicilidi (AA.VV., 2012), affioranti nel versante nebrodico a monte dell'abitato di Murazzo Rotto. In realtà, al di sotto della copertura lavica è possibile ipotizzare geometrie molto complesse dei terreni del substrato costituito da unità alloctone della catena. Uno dei profili geologici a cornice del Foglio 612 "Randazzo" (AA.VV., 2012) (Fig. 16), tracciato lungo una direzione NO-SE, immediatamente ad est dell'abitato, è sufficientemente rappresentativo della possibile complessità del substrato sottostante la sottile copertura lavica che caratterizza questa zona periferica del vulcano. Dal punto di vista geomorfologico, il profilo (Fig. 16) accredita comunque una geometria sub-orizzontale del contatto alla base dell'insieme delle colate laviche di Randazzo, che sono raffigurate poggianti su una superficie di spianamento, priva di depositi, che modella diverse unità del substrato deformato.

Fig. 16 – Porzione sud-orientale del profilo geologico A-A' del Foglio CARG 612 "Randazzo" (AA.VV., 2012 mod), la cui traccia, orientata NO-SE, è ubicata ad est dell'area di studio.

Terreni di copertura

Nel territorio di Randazzo sono state rilevate 3 tipologie diverse di coperture, oltre i riporti di origine antropica. Gran parte delle coperture sono costituite da lave (**LC**) che, ricoprendo un substrato prevalentemente di natura argillosa ed essendo intercalate a orizzonti di natura clastica, determinano ripetute inversioni nei profili verticali di velocità delle onde sismiche. Le lave sono state tutte classificate, secondo la codifica provvisoria, come "lave di copertura indefinite su morfologie del substrato articolate". Nel caso delle coperture laviche (**LC**), nella prospettiva della microzonazione di primo livello, si è tenuto conto dell'estrema variabilità laterale delle litofacies che compongono le diverse parti di una singola colata. La cartografia pregressa da cui attingere le informazioni per la realizzazione degli studi di primo livello, a prescindere dalla scala di dettaglio, è stata basata su suddivisioni dei terreni lavici in unità litostratigrafiche che, fatta eccezione per le colate storiche, per le quali sono stati tracciati i limiti, raggruppano più colate laviche senza fornire comunque alcun dettaglio sulla variabilità laterale e verticale dei prodotti. Si

30

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

sono dunque resi necessari rilievi originali mirati ad una dettagliata suddivisione dei terreni vulcanici. Nella carta geologico-tecnica, sono stati ricostruiti, con un grado di affidabilità dipendente dalle effettive esposizioni in superficie, i limiti delle singole colate laviche, con l'indicazione dell'ordine di sovrapposizione. Gli studi condotti hanno permesso di riconoscere all'interno della successione lavica una unità basale di lave (lave basali delle sezioni geologiche dell'Allegato 1), localmente caratterizzata da un potente orizzonte di alterazione (CLec nella carta geologico tecnica). Le lave basali sono state fortemente modellate dall'azione dei fiumi e sono delimitate da scarpate, spesso ricoperte al piede da potenti accumuli di detrito, corrispondenti al bordo interno di terrazzi fluviali ricoperti da alluvioni (SWtf nella carta geologico tecnica). Le alluvioni terrazzate antiche, al tetto delle lave di base, sono disposte in più ordini lungo i corsi d'acqua che si sono sviluppati lungo il contatto lave-substrato (profilo B-B' in Allegato 1) e formano ampi terrazzi nella porzione orientale dell'area investigata. Alluvioni recenti (v. sondaggio 087038P10 in Allegato 2) invece occupano una vasta area nel centro abitato (profilo B-B' in Allegato 1), dove si sono depositate al tetto delle lave basali e sono limitate verso valle da colate laviche recenti, a testimonianza della loro deposizione in seguito a fenomeni di sbarramento lavico. All'interno dell'orizzonte lavico più recente (colate laviche oloceniche dell'Allegato 1), sovrastante i depositi alluvionali terrazzati, si è tentato di individuare, laddove possibile, i contorni delle singole colate e, all'interno di queste, dei singoli flussi lavici.

Nella lettura ed interpretazione della carta, va rilevato che sia i margini che il fronte delle colate sono discontinuità che possono costituire elementi di concentrazione dell'amplificazione sismica in quanto generalmente caratterizzati da una notevole quantità di materiale scoriaceo fittamente alternato a livelli di lave massive, in contrapposizione alle porzioni centrali di riempimento di canali, dove possono prevalere lave massive sormontate da uno spessore variabile di scorie (Fig. 17).

4. Dati geotecnici e geofisici

I dati geotecnici e geofisici disponibili per l'area di studio, derivano da n. 74 indagini complessive, di cui n. 61 indagini pregresse e n. 13 nuove indagini geofisiche HVSR, realizzate nel presente studio dall'Università di Catania. Le indagini, archiviate secondo gli "Standard di rappresentazione ed archiviazione informatica – Versione 2.0beta–II", si suddividono in n. 54 indagini puntuali e n. 20 indagini lineari. L'insieme delle indagini puntuali e lineari disponibili (per l'ubicazione si veda la carta delle indagini) sono schematizzate per tipologia nella sottostante tabella 2:

	G	eologia (G	G)	Geofisica	(GF)	Geotecnica in sito (GS)		TOTALE	
Totale Ind. Punt.	S	SC	SS	HVSR (Unict)	DH	SPT	GG	GF	GS
54	16	5	3	13	8	9	24	21	9

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

	Geofisica (GF)	TOTALE
Totale Ind. Lineari	SR	GF
20	20	20

Tab. 2 – Insieme delle indagini puntuali e lineari relative all'area di studio. Le sigle si riferiscono al tipo d'indagine, secondo gli "Standard di rappresentazione ed archiviazione informatica – Versione 2.0beta-II"

I dati pregressi derivano da indagini realizzate per lo studio geologico a supporto del P.R.G. e da indagini effettuate sia per la progettazione di edifici pubblici sia per studi di riqualificazione urbana, messi a disposizione dall'amministrazione comunale di Randazzo. In particolare, le indagini geognostiche ricadenti principalmente nel settore settentrionale dell'area di studio consistono in n. 24 sondaggi meccanici a carotaggio continuo, che raggiungono profondità comprese tra 3 e 30 metri e per cinque dei quali viene segnalato il prelievo di un campione, senza fornire, però, i dati relativi alle analisi di laboratorio.

Nella documentazione geologica relativa al P.R.G. di Randazzo e nelle altre relazioni geologiche messe a disposizione, vengono forniti, in maniera lacunosa, i parametri geotecnici, geomeccanici, geofisici e parzialmente idrogeologici dei principali litotipi affioranti e presenti nel sottosuolo, che complessivamente derivano, oltre che da indagini geofisiche down-hole e prove geotecniche in sito SPT, anche da studi precedenti condotti in altri siti e finalizzati ad altri scopi e da dati della Letteratura geologica e geotecnica. Si tratta del peso di volume, coesione, angolo di attrito interno, compressione semplice e coefficiente di sottofondo (**Allegato 3**). La scarsa attendibilità di alcuni dati riportati, per la mancanza di informazioni relative alla fonte da cui essi derivano, ha impedito il loro utilizzo per la definizione dei parametri geotecnici dei terreni presenti nell'area oggetto del presente studio.

I terreni oggetto di studio sono stati classificati utilizzando il sistema USCS (Tab. 3). Con alcune modifiche, tale classificazione è stata recepita negli "Standard di rappresentazione e archiviazione informatica-Versione 2.0beta-II", che prevede la suddivisione in cinque gruppi principali a loro volta suddivisi in sottogruppi in relazione ad alcune proprietà indice, tradotta in legenda della carta geologico-tecnica secondo la tabella 4.

TERRENI A GRANA FINE						TERRENI A GRANA GROSSA																		
Passante al setaccio n.200 > 50 %					Trattenuto al setaccio n.200 > 50%																			
$w_1 \ge 50 \%$ $w_1 < 50 \%$							% Sabbia % Ghiaia Passante al setaccio n. 4 > 50%							% Ghiaia > % Sabbia Trattenuto al setaccio n.4 > 50%										
Organico w ₁ (essiccato)/ w ₁ (naturale)	Inorganico		Inorganico			pass. 200 > 12%			5% <pass. 200<12%<="" td=""><td colspan="2">pass. 200 < 5%</td><td colspan="2">pass. 200 > 12%</td><td colspan="3">5%~pass. 200<12%</td><td colspan="2">pass. 200 < 5%</td></pass.>			pass. 200 < 5%		pass. 200 > 12%		5%~pass. 200<12%			pass. 200 < 5%					
sotto Linea A	sotto Li	sopra Linea A sotto Linea A		Ip < 4 sotte	4< Ip <7 sopra Linea A	Ip > 7 sopra Linea A			Cu < 6 e/o Cc > 3		Cu ≥6 e l < Cc < 3		Cu < 6 e/c	Cu ≥ 6 e 1					Cu < 4 e/o Cc > 3		Cu > 4 e/o 1 <cc<3< td=""><td>$Cu \ge 4 e/c$</td><td>Cu ≥ 4 e 1</td></cc<3<>	$Cu \ge 4 e/c$	Cu ≥ 4 e 1	
	nea A			Linea A			% fine CL o CH	% fine M e C	% fine ML o MH	% fine CL o CH	% fine ML o WI	% fine CL o CH	% fine ML c MH	5 Cc > 3	< Cc < 3	% fine CL ¢ CH	% fine M e C	% fine ML c MH	% fine CL o CH	% fine ML o MH	% fine CL o CH	% fine ML o MI	5 Cc > 3	< Cc < 3
JO	MH	CH	HO	ML	CL-ML	CL	SC	SC-SM	SM	SP-SC	SP-SM	SW-SC	SW-SM	SP	SW	GC	GC-GM	GM	GP-GC	GP-GM	GW-GC	GW-GM	GP	GW
Lini organici argille limose organiche di bassa plasticità	Limi inorganici	Argille inorganiche di elevata plasticità	Argille organiche di medio alta plasticità, limi organici	Limi inorganiei, limi argillosi di bassa plasticità	Argilla linosa o lino argilloso di bassa plasticità	Argille inorganiche di medio-bassa plasticità	Sabbia argillose miscele di sabbia e argilla	Sabbie limose e argillose	Sabbie limose miscele di sabbia e limo	Sabbia argillosa poco assortita	Sabbia limosa poco assortita	Sabbia argillosa ben assortita	Sabbia limosa ben assortita	Sabbie pulite con granulometria poco assortita miscele di ghiaia e sabbi	Sabbie pulite con granulometria ben assortita sabbie ghiaiose	Ghiaie argillose, miscele di ghiaia, sabbia e argilla	Ghiaia limosa e argillosa	Ghiaia limosa, miscele di ghiaia sabbia e limo	Ghiaia argillosa poco assortita	Ghiaia limosa poco assortita	Ghiaia argillosa ben assortita	Ghiaia limosa ben assortita	Ghiaie pulite con granulometria poco assortita miscele fi ghiaia e sabbia	Ghiaie pulite con granulometria ben assortita miscele di ghaia e sabbia

Tab.3 - Classificazione dei terreni secondo il sistema USCS

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Terreni di coperti	ura								
	RI	Terreni contenenti resti di attività antropica							
	GW	Ghiaie pulite con granulometria ben assortita, miscela di ghiaia e sabbie							
	GP	Ghiaie pulite con granulometria poco assortita, miscela di ghiaia e sabbia							
	GM	Ghiaie limose, miscela di ghiaia, sabbia e limo							
	GC	Ghiaie argillose, miscela di ghiaia, sabbia e argilla							
	sw	Sabbie pulite e ben assortite, sabbie ghiaiose							
	SP	Sabbie pulite con granulometria poco assortita							
	SM	Sabbie limose, miscela di sabbia e limo							
	SC	Sabbie argillose, miscela di sabbia e argilla							
	OL	Limi organici, argille limose organiche di bassa plasticità							
	ОН	Argille organiche di media-alta plasticità, limi organici							
	МН	Limi inorganici, sabbie fini, Limi micacei o diatomitici							
	ML	Limi inorganici, farina di roccia, sabbie fini limose o argillose, limi argillosi di bassa plasticità							
	CL	Argille inorganiche di media-bassa plasticità, argille ghiaiose o sabbiose, argille limose, argille magre							
	СН	Argille inorganiche di alta plasticità, argille grasse							
	PT	Torbe ed altre terre fortemente organiche							

Tab. 4 - Legenda della carta geologico-tecnica per la microzonazione sismica: terreni di copertura

I terreni affioranti nell'area e riconosciuti nella stratigrafia dei sondaggi sono stati, quindi, raggruppati secondo le categorie previste dalla legenda. Per ogni categoria riconosciuta, si sono raccolte tutte le informazioni disponibili sui principali caratteri geotecnici che sono stati riassunti nelle tabelle riportate nell'**Allegato 3** della presente relazione. Va inoltre ricordato che tra i dati acquisiti non sono presenti informazioni relative al substrato geologico rigido.

Per quanto riguarda le caratteristiche fisico-meccaniche dei terreni attraversati dai vari sondaggi meccanici disponibili, va detto che i valori di peso di volume, angolo di attrito, coesione e resistenza alla compressione semplice si riferiscono essenzialmente a dati di letteratura geologica, di fonte imprecisata, e a risultati di analisi e prove di laboratorio eseguiti per precedenti studi geologici, a noi non pervenuti. Informazioni riguardanti i principali parametri geotecnici dei litotipi investigati sono state desunte da n. 9 prove SPT. Queste sono state eseguite in corrispondenza di 3 sondaggi geognostici realizzati in occasione degli studi geologici per la realizzazione della nuova sede del distaccamento dei Vigili del Fuoco, nel settore orientale dell'area di studio. Tali indagini hanno permesso di caratterizzare i terreni di copertura, descritti nella relazione originale fornita come depositi piroclastici di colore bruno-nerastro, costituiti da sabbie e ceneri vulcaniche contenenti qualche elemento centimetrico. Delle 9 prove eseguite, tre di queste sono andate a rifiuto nei primi 10-15 cm, e le restanti prove hanno fornito valori medi di NSPT pari a 30, in range variabile da 24 a 38, e con numero NSPT generalmente crescente al crescere della profondità. Per quanto riguarda le prove andate a rifiuto, molto probabilmente queste hanno interessato gli inclusi centimetrici dispersi nella matrice a granulometria sabbiosa. In corrispondenza degli stessi sondaggi, i litotipi litoidi ricoperti dai termini sabbiosi, sono stati caratterizzati in funzione del loro grado di fratturazione desunto tramite la determinazione dell'indice RQD. Tali dati mettono in evidenza la presenza, costante nei tre sondaggi, di un livello fratturato e mediamente fratturato, con valori di RQD compresi tra 45 e 55%, al di sopra di livelli di lava massiva con indice RQD compreso tra 90 e 100%.

I dati geofisici disponibili derivano da N. 8 indagini down-hole, realizzate a supporto di diversi studi e che investigano profondità comprese tra 14 e 30 m, da n. 20 profili

36

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 sismici a rifrazione (SR) e da 13 misure di microtremore ambientale (HVSR), realizzate dall'Università di Catania a supporto dei dati pregressi.

Le indagini down-hole di cui si è in possesso hanno permesso una valutazione delle velocità Vs nei litotipi attraversati dai relativi sondaggi (Allegato 3) ed in particolare nel materiale di riporto, nelle colate laviche fratturate e massive oloceniche e basali, nelle alluvioni oloceniche e nei prodotti vulcanoclastici. Le varie indagini disponibili, finalizzate a diversi studi, presentano gradi di dettaglio differenti, da 1 metro (087038P13DH2; 087038P10DH3; 087038P12DH4; 087038P11DH5), fino ad intervalli di investigazione compresi tra 1,5 e 8 m (087038P6DH1; 087038P14DH24; 087038P15DH25; 087038P16DH26). Nel complesso, le Vs misurate in corrispondenza dei livelli scoriacei, sia delle lave oloceniche che di quelle basali, sono generalmente inferiori a 750 m/s. Le lave massive investigate raggiungono valori di Vs decisamente al di sopra degli 800 m/s, fino a valori massimi di circa 1400 m/s (087038P10DH3). In particolare, l'indagine 087038P13DH2, mette chiaramente in evidenza la presenza in sottosuolo di livelli lavici scoriacei (Vs < 600 m/s) alternati a livelli composti da lave massive (Vs > 800 m/s), i quali raggiungono valori massimi di Vs pari a circa 1200 m/s. In corrispondenza dei terreni di riporto e dei terreni alluvionali sabbioso-ghiaiosi vengono registrati valori di Vs caratteristici piuttosto bassi (< 400 m/s).

I 20 profili sismici a rifrazione disponibili, 3 dei quali mancano di documentazione allegata, sono stati eseguiti contestualmente agli studi geologici per la realizzazione di strutture pubbliche. Queste indagini forniscono indicazioni utili riguardo le velocità Vp e i parametri elastici dei terreni attraversati (**Allegato 3**). Inoltre, tali indagini, seppure scarsamente significative per la validazione del modello del sottosuolo, costituiscono

esempi molto eloquenti della variabilità laterale e verticale che contraddistingue i campi lavici. Alcune indagini mettono in evidenza la netta differenza tra terreni superficiali di riporto (Vp < 400 m/s) e i sottostanti terreni vulcanici interpretati come lave scoriacee (Vp > 650-1000 m/s). In realtà, dato che quest'ultimo intervallo di valori si riferisce ai valori medi delle velocità Vp rappresentativi dei livelli più profondi investigati, di spessore indefinito (vedi il sondaggio 087038P5S10 e l'indagine sismica lineare 087038L14SR14), le velocità maggiori di 800 m/s possono essere riferite alle lave compatte. In generale, questa tipologia di investigazione sismica, così come le indagini down-hole, ha permesso di discriminare la presenza di porzioni scoriacee di una colata lavica dai livelli massivi di questa, o addirittura mettere in evidenza la sovrapposizione di livelli massivi di lava con differente grado di fatturazione.

Al fine di valutare le frequenze proprie di oscillazione dei diversi siti, l'Università di Catania ha effettuato n. 13 misure di microtremore ambientale (noise), distribuite sull'intera area di studio del comune di Randazzo, i cui risultati sono sintetizzati nell'allegata carta delle frequenze, nella quale per ogni punto di misura sono riportate le frequenze alle quali il moto del terreno viene amplificato per risonanza stratigrafica e l'entità dell'amplificazione quantificata sulla base del rapporto H/V (rapporto tra le componenti spettrali orizzontali, H, e verticale, V, del moto del suolo). Per il dettaglio sulla tecnica adottata si rimanda all'**Allegato 4** della presente relazione.

I risultati ottenuti indicano che le frequenze di risonanza ricadono preferenzialmente all'interno di un range molto ristretto, compreso tra ~0,6 e ~2 Hz. In alcuni casi, vengono segnalati due picchi, alcuni dei quali abbracciano valori di frequenza più elevati. Tali picchi sono associati a frequenze proprie di oscillazioni differenti, riferibili a discontinuità stratigrafiche ubicate a profondità variabili da sito a sito. Le frequenze più basse di amplificazione sono probabilmente legate all'assetto geologico profondo dell'area in esame, viceversa le frequenze più alte possono essere ricondotte a disturbi superficiali quali la presenza di terreni detritici di copertura o fenomeni di origine antropica. A titolo

38

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 di esempio, si segnala l'indagine 087038P26, ubicata in corrispondenza di depositi alluvionali terrazzati che ricoprono le colate laviche, la quale mostra due picchi; uno ad elevata frequenza (circa 13.5 Hz) ed uno a bassa frequenza (0.65 Hz).

5. Modello del sottosuolo

Il modello geologico di sottosuolo del territorio comunale di Randazzo, ampiamente descritto nei capitoli precedenti, può essere sintetizzato nella presenza di un substrato geologico molto articolato, con caratteri meccanici molto variabili, e nella presenza di due distinti orizzonti lavici, separati da livelli discontinui di alluvioni terrazzate. Le lave basali costituiscono un orizzonte di lave massive, caratterizzate da Vs> 800 m/s, con spessori massimi non valutabili, ma a luoghi sicuramente superiori ai 40 m. Le alluvioni intercalate all'interno della successione lavica presentano Vs< 400 m/s. Le lave sommitali sono caratterizzate da campi compositi nei quali è possibile riconoscere più flussi lavici che aumentano notevolmente la variabilità laterale del comportamento meccanico.

Alla risposta sismica locale contribuiscono quindi più discontinuità meccaniche sovrapposte, marcate da forte contrasto di impedenza sismica e associate anche all'inversione della velocità delle onde sismiche di taglio, nel caso dell'appoggio delle lave sul substrato argilloso e delle lave oloceniche sulle alluvioni terrazzate. Nelle aree di affioramento delle lave basali è prevedibile un comportamento più omogeneo di quello atteso all'interno delle lave oloceniche, caratterizzate da una maggiore complessità dei campi lavici. Fenomeni di amplificazione a frequenze relativamente alte sono attese laddove le lave sono ricoperte dalle alluvioni o dove sono caratterizzate da potenti orizzonti di alterazione.

In questo primo livello di approfondimento, i dati di superficie raccolti mediante rilievi speditivi che hanno integrato le conoscenze derivanti dalla cartografia ufficiale sono stati sufficienti a ricostruire il modello di sottosuolo nelle sue linee essenziali. I dati diretti di sottosuolo hanno avuto un ruolo secondario, anche se sono risultati particolarmente utili per il riconoscimento della potente successione alluvionale che si estende per vasti tratti del centro abitato (v. carta geologico tecnica). Va comunque sottolineato che i successivi stadi di approfondimento dovranno necessariamente essere supportati da una adeguata cartografia geologica di dettaglio aggiornata, da estendere almeno a tutta l'area urbanizzata, per supplire alla mancanza di elaborati pregressi. Nuove indagini di sottosuolo dovranno, inoltre essere destinate alla verifica della reale geometria del contatto lave-substrato sedimentario, che in questa prima fase non è stata ricostruita per la mancanza di dati di sottosuolo utilizzabili allo scopo. Le indagini dovranno essere inoltre mirate a ricostruire, quanto più possibile, le variazioni laterali delle litologie che compongono il substrato sedimentario deformato, determinandone, ove possibile, i caratteri meccanici essenziali. Su questa base va infine determinata la profondità del substrato rigido, con caratteri tipici di un bedrock sismico, fin qui rimasto indeterminato.

I livelli di copertura, costituiti da alternanze di orizzonti clastici e lave, sono contraddistinti da ripetute inversioni delle velocità delle onde sismiche. Tale prerogativa non rientra nei modelli correntemente applicati nella valutazione delle amplificazioni di tipo stratigrafico e pone molti interrogativi che andranno risolti nelle indagini di approfondimento successive. Va sottolineato che i dati raccolti in aree vulcaniche in occasione di precedenti studi di microzonazione (OPCM 3278/2003) nella zona del comune di Santa Venerina hanno evidenziato una estrema variabilità laterale e verticale delle Vs, con frequenti inversioni di velocità, con valori che oscillano dai 450 m/s ai 1150 m/s, in funzione del diverso rapporto tra prodotti scoriacei e lave massive. Anche quando

40

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

le lave raggiungono valori elevati, comunque non possono essere trattate quale substrato rigido, in quanto poggianti su livelli a bassa velocità. Ciò è confermato dalle misure di microtremore ambientale effettuate su lave massive affioranti che hanno evidenziato effetti di amplificazione, più o meno marcati, con frequenze generalmente prossime ai 3 Hz. Amplificazioni a frequenze più elevate si registrano in aree contraddistinte dalla presenza di una copertura detritica sulle lave. Appare evidente che nei successivi livelli di approfondimento sarà necessario interpretare il ruolo delle inversioni delle velocità nella selezione delle frequenze di oscillazione proprie dei siti e di verificare quali sono gli elementi delle successioni laviche che invece determinano le differenti ampiezze di oscillazione.

6. Interpretazioni ed incertezze

Nel territorio comunale di Randazzo, i dati pregressi utilizzati si riferiscono a indagini effettuate per lo studio geologico a supporto del Piano Regolatore Generale (P.R.G.), e ad indagini effettuate per la progettazione di diverse opere pubbliche. Per quanto riguarda la documentazione cartografica relativa agli studi per il P.R.G., va detto che l'amministrazione comunale di Randazzo ha fornito solamente la carta geomorfologica, la carta del rischio vulcanico e del rischio idrogeologico e quella dell'ubicazione delle indagini. Quindi, il modello geologico del sottosuolo è stato ricostruito essenzialmente sulla base della revisione delle stratigrafie dei sondaggi, corredati da indagini geofisiche, condotti per la realizzazione del P.R.G. e altri edifici pubblici. Complessivamente, tali indagini, che raggiungono profondità comprese tra 3 e 30 metri dal piano campagna, sono ubicate principalmente nel settore settentrionale del territorio comunale e secondariamente in quello orientale di questo. Nonostante la disomogenea distribuzione areale di tali indagini, essi sono stati comunque utilizzati per la definizione dell'assetto geologico profondo di quest'area del territorio comunale. Per archiviare le stratigrafie dei sondaggi secondo gli "Standard di rappresentazione ed archiviazione informatica – Versione 2.0beta-II", si è scelto di reinterpretare i dati sulla base dei rilievi aerofotogrammetrici e, soprattutto, di campagna.

Per quanto riguarda le caratteristiche fisico-meccaniche dei terreni investigati, come visto nel Capitolo 4 le uniche informazioni disponibili si rifanno o a dati di letteratura o ad analisi e prove di laboratorio relativi a studi geologici precedenti, a noi non pervenuti. Altre informazioni sulle caratteristiche meccaniche dei litotipi attraversati dai sondaggi sono rappresentate da n. 3 prove SPT realizzate nel settore orientale dell'area di studio relativamente agli studi per la realizzazione della nuova sede del dislocamento dei Vigili del Fuoco. Per quanto riguarda gli studi a supporto del P.R.G., nelle schede dei vari sondaggi geognostici eseguiti vengono segnalati i prelievi di n. 5 campioni dei quali non è stata fornita alcuna documentazione in merito all'analisi di laboratorio. Per queste ragioni, nelle successive fasi di approfondimento bisognerà, dunque, analizzare più in dettaglio il materiale detritico, i prodotti vulcanoclastici e i depositi alluvionali. Questi ultimi andrebbero meglio caratterizzati dal punto di vista granulometrico e si dovrebbe procedere ad una accurata definizione delle curve isopiezometriche della falda superficiale in tali terreni, al fine di poter individuare quelle aree potenzialmente soggette a fenomeni di liquefazione (vedi Capitolo 7).

Per quanto riguarda le indagini geofisiche, i profili i profili sismici a rifrazione, che hanno consentito di investigare esclusivamente gli orizzonti lavici più superficiali (vedi Capitolo 4) del settore settentrionale ed orientale dell'area di studio, mancano spesso degli elaborati grafici.

Tra i dati provenienti da studi precedenti, particolare interesse è rivestito dal downhole realizzato nel sondaggio 087042P1. Analizzando, infatti, le Vs medie nei diversi litotipi, appare evidente che la stratigrafia dei terreni vulcanici degli ultimi metri dalla

42

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 superficie è caratterizzata da ripetute inversioni delle velocità delle onde sismiche. Questo fenomeno trova conferma nei dati raccolti in aree vulcaniche in occasione di precedenti studi di microzonazione (OPCM 3278/2003) nella zona del comune di Santa Venerina (vedi Capitolo 5). Tale prerogativa non rientra nei modelli correntemente applicati nella valutazione delle amplificazioni di tipo stratigrafico e pone molti interrogativi che andranno risolti nelle indagini di approfondimento successive, che dovranno essere volte ad una accurata misura delle Vs nei diversi corpi geologici.

Da quanto finora esposto, risulta chiaro che i dati pregressi messi a disposizione dall'amministrazione comunale di Randazzo sono risultati insufficienti nella definizione delle geometrie 3D dei corpi litologici sepolti sotto le lave recenti (vedi Capitolo 5). Anche le "Sezioni Geologiche interpretative" realizzate, in direzione E-O e NNO-SSE, rispettivamente per lo studio geologico per la riqualificazione urbana della Via Duca degli Abruzzi e per gli studi relativi alla realizzazione della nuova sede della dislocazione dei Vigili del Fuoco non sono state archiviate secondo gli "Standard di rappresentazione e archiviazione informatica Versione 2.0beta-II" in quanto la loro qualità e quella dei supporti cartografici non sono state ritenute sufficienti (es. in Fig. 18).

Fig. 18 - Carta Geolitologica in scala 1:4.000 (a) e Sezione Geologica interpretativa (b) allegata alla relazione geologica per la riqualificazione urbana di Via Duca degli Abruzzi del comune di Randazzo.

Si è, dunque, ricorso alle conoscenze pregresse di tutta la regione limitrofa, riguardo l'evoluzione tettonica e morfologica dell'area, che hanno consentito di stabilire i criteri per la ricostruzione della morfologia subvulcanica e dell'andamento del substrato sedimentario al di sotto della copertura lavica che caratterizza l'area. Naturalmente, nel corso degli studi di livello superiore, si rende necessario acquisire nuovi dati di

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 sottosuolo al fine di poter meglio stabilire le geometrie sepolte e gli spessori dei diversi corpi geologici, oggi valutati solo sulla base dei loro affioramenti in superficie.

Infine, la definizione dei caratteri geotecnici e della geometria del bedrock sismico, rimane uno degli obiettivi imprescindibili nelle successive fasi d'approfondimento.

7. Metodologie di elaborazione e risultati

I dati di base e gli elaborati cartografici utilizzati (vedi elenco in Capitolo 1), riguardanti diversi aspetti dell'assetto geologico dell'area comunale (geologia, idrogeologia, geomorfologia e geotecnica), sono caratterizzati da un dettaglio variabile dalla scala 1:10.000 alla scala 1:1.000. Le carte tematiche sono state georeferenziate ed inserite in un progetto EsriArcGis, ottenendo così la visualizzazione e la sovrapposizione dei diversi elaborati garantendo la corrispondenza delle coordinate geografiche, della scala e quindi delle distanze. Naturalmente, nella stesura degli elaborati cartografici prodotti nel presente studio, il peso delle informazioni di maggiore dettaglio risulta essere preponderante. Per l'individuazione delle coperture detritiche, dei movimenti franosi si è fatto riferimento principalmente all'analisi fotogrammetrica е contemporaneamente al contributo fornito da studi precedenti. Per guanto riguarda, invece, la mappatura dei terreni affioranti e dei principali lineamenti tettonici, a seguito di accurate verifiche di terreno unitamente all'analisi di aerofotogrammetrie, si è dovuto procedere ad una sostanziale revisione dei dati forniti. Grazie all'integrazione tra gli accurati rilievi di terreno e le osservazioni derivanti dall'analisi fotogrammetrica è stato possibile ricostruire la successione geolitologica dell'area di studio (vedi Capitolo 3).

Una volta distinte le diverse unità geolitologiche affioranti e stabiliti i loro rapporti geometrici nel sottosuolo è stato possibile definire le zone stabili suscettibili di amplificazione locale, sulla base degli "Indirizzi e Criteri per la Microzonazione Sismica" (Gruppo di lavoro MS, 2008) e dei Contributi per l'aggiornamento degli "Indirizzi e Criteri per la Microzonazione Sismica" (Dolce et al, 2011). Dato il numero esiguo di indagini a nostra disposizione, un ruolo fondamentale per la determinazione di tali zone è stato svolto dalle sezioni geologiche a scala 1:5.000 (Allegato 1), dove si è cercato di evidenziare quegli elementi di non immediata lettura nella "Carta geologico tecnica" quali i rapporti geometrici tra i depositi alluvionali rispetto alle colate laviche di copertura, e le variazioni degli spessori e della giacitura dei corpi lavici stessi. Per quanto riguarda l'amplificazione per effetti topografici e morfologici viene proposta una procedura che, a partire dal Modello Digitale del Terreno (DEM) e attraverso una serie di elaborazioni effettuate utilizzando software GIS, consente di identificare quei pendii caratterizzati da una inclinazione > 15° e da un dislivello superiore a circa 30 m. Il primo step di tale procedura consiste nell'elaborazione di una carta delle inclinazioni in cui vengono distinti due campi con inclinazione minore e maggiore di 15° (Fig. 19). Nel secondo step è stata costruita una carta dell'energia del rilievo, definita come il dislivello massimo (in metri) esistente in ciascuna superficie unitaria (Ciccacci et al., 1986) che nel caso specifico è un quadrato di 100 metri di lato (Fig. 20). Infine, combinando le due carte fin qui elaborate, è stata ottenuta la carta in cui sono evidenziati i pendii soggetti a potenziali fenomeni di amplificazione topografica (Fig. 21).

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Fig. 19 - Carta delle inclinazioni dell'area di studio. Sono distinte inclinazioni $< 15^{\circ}$, in verde, $e > 15^{\circ}$, in rosso.

Fig. 20 – Carta dell'energia del rilievo dell'area di studio. Sono distinti dislivelli < 30 m, in giallo, e > 30 m, in verde.

Fig. 21 - Carta dell'amplificazione topografica dell'area di studio . Le aree potenzialmente soggette ad amplificazione topografica sono evidenziate in blu.

Risulta evidente che tali pendii sono concentrati lungo scarpate erosionali impostate in rocce laviche, dislocate nel settore centro-settentrionale dell'area di studio e precisamente lungo la sponda destra del Fiume Alcantara. Anche le due sezioni topografiche in scala 1:5.000 (**Allegato 5**), dirette NNO-SSE, realizzate in corrispondenza delle zone centrale e occidentale del settore urbanizzato dell'area di studio, ortogonalmente alle scarpate con pendenza maggiore di 15°, mostrano chiaramente che queste ultime superano i 30 m di altezza.

Va segnalata, inoltre, l'ulteriore presenza di aree estese soggette ad amplificazioni topografiche, e quindi caratterizzate da inclinazioni maggiori di 15° ed energia del rilievo superiore a 30 m, che dominano il settore a ridosso del margine settentrionale dell'area di studio, lungo il fianco sinistro della Valle del Fiume Alcantara. Queste aree, seppure al di fuori dell'area di stretto interesse, essendo poste subito a monte del centro abitato e data la segnalazione di diversi fenomeni franosi, andrebbero considerate maggiormente in quanto capaci di influenzare l'evoluzione morfologica delle aree di fondovalle e del fianco meridionale della valle.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Per quanto riguarda le instabilità manifeste e potenziali, si è fatto riferimento agli studi pregressi del PAI che hanno trovato riscontro anche dalle analisi morfologiche condotte nell'area tramite analisi di fotogrammetrie e verifiche di terreno nelle aree soggette ad instabilità di versante. Nella "Carta dei dissesti" (Fig. 22) e nella "Carta della pericolosità e del rischio" (Fig. 23) del PAI (Area Territoriale del F. Alcantara – 096) vengono riportati 11 dissesti, elencati nella tabella 5.

> Area territoriale del bacino idrografico del F. Alcantara (096) Stralcio della "Carta dei dissesti N° 13" (ALCANTARA D 612120)

Fig. 22 - Stralcio della "Carta dei dissesti N° 13" (A096 D 612120) del PAI.

Area territoriale del bacino idrografico del F. Alcantara (096) Stralcio della "Carta della pericolosità e del rischio N° 13" (ALCANTARA PeR 612120)

Fig. 23 - Stralcio della "Carta della pericolosità e del rischio N° 13" (A096 P R 612120) del PAI.

Per quanto riguarda il centro abitato di Randazzo, sono state riscontrate le seguenti aree pericolose:

N° 2 aree a pericolosità elevata (P3) a nord e ad ovest del centro abitato (n° 096-5RD-047 – n° 096-5RD-009 – n° 096-5RD-046) che coinvolgono alcuni edifici sottoposti ad un rischio molto elevato (R4) (Fig. 25);

- N° 5 aree a pericolosità media (P2) quattro delle quali (dissesti n° 096-5RD-007; n° 096-5RD-045; n° 096-5RD-004; n° 096-5RD-014) si trovano alla periferia occidentale dell'abitato (Fig. 24) ed includono tratti di strade comunali ed edifici isolati sottoposti a rischio medio, la quinta area (dissesto n° 096-5RD-003) a nord del centro abitato coinvolge un edificio isolato (E1) e tratti di una strada statale che risultano sottoposti ad un grado di rischio elevato (R3);

N° 3 aree a pericolosità moderata (P1) (dissesti n° 096-5RD-013; n° 096-5RDL-001; n° 096-5RD-002) che coinvolgono edifici isolati (E1) e tratti di strada e comunale che risultano sottoposti ad un grado di rischio moderato (R1) nonché tratti di strada statale (E3) sottoposti ad un grado di rischio medio (R2).

Sigla	Bacino idrografico	Località	CTR 1:10.000	Tipologia	Attività	Pericolosità	Rischio
096-3RD-001	Alcantara	Sud-Ovest monte S.Marco	612120	Frana complessa	Quiescente	Media	-
096-3RD-002	Alcantara	Sud-Est Monte S.Marco	612120	Colamento lento	Inattiva	Moderata	Medio
096-3RD-003	Alcantara	Sud Monte S.Marco	612120	Frana complessa	Inattiva	Media	Elevato
096-3RD-004	Alcantara	C.da Sulle di Murazzo Rotto	612120	Deformazione superficiale lenta	Attiva	Media	Medio
096-3RD-007	Alcantara	C.da Sulle di Murazzo Rotto	612120	Area a franosità diffusa	Attiva	Media	Medio
096-3RD-009	Alcantara	NW centro abitato- V. Pozzo	612120	Crollo e/o ribaltamento	Attiva	Elevato	Molto elevato
096-3RD-013	Alcantara	C.da Sulle di Murazzo Rotto	612120	Scorrimento	Quiescente	Moderata	Moderato
096-3RD-014	Alcantara	C.da Sulle di Murazzo Rotto	612120	Dissesto dovuto ad erosione accelerata	Attiva	Medio	Medio
096-3RD-045	Alcantara	C.da Sulle di Murazzo Rotto	612120	Dissesto dovuto ad erosione accelerata	Attiva	Media	-
096-3RD-046	Alcantara	Ovest centro abitato	612120	Crollo e/o ribaltamento	Attiva	Elevato	-
096-3RD-047	Alcantara	Versante nord centro abitato	612120	Crollo e/o ribaltamento	Attiva	Elevato	Molto elevato

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Tab. 5 – Flenco de	i dissesti che inte	ressano il centro	abitato di Randaz	zo e le aree limitrofe
		Coourio in contro	ubituto ui itutiuuz	

L'area strettamente interessata dal centro urbano non risulta particolarmente soggetta a fenomeni di dissesto, in quanto si sviluppa interamente su un versante in cui affiorano rocce di natura vulcanica, dotate di ottime caratteristiche meccaniche. Gli unici fenomeni riscontrati riguardano, infatti, la periferia nord-occidentale del paese dove, in corrispondenza dei fronti rocciosi subverticali che sovrastano il corso del T. Annunziata, si possono verificare dei fenomeni di crollo di blocchi basaltici. Infatti, a causa della fratturazione dell'ammasso roccioso e della morfologia subverticale si sono avuti in passato fenomeni di crollo e ribaltamento di masse rocciose. Lungo tale fronte roccioso sono già stati realizzati parziali interventi di consolidamento. Anche se a valle del fronte roccioso non vi sono particolari insediamenti o manufatti il progredire, nel corso degli anni, del fenomeno di arretramento del fronte roccioso, potrebbe andare ad insidiare la stabilità dei manufatti presenti a monte del costone, posti quasi a ridosso della zona di ciglio. Altri fenomeni di dissesto sono inoltre presenti lungo i versanti a nord del corso del T. Annunziata e del F. Alcantara, che coinvolgono porzioni periferiche del centro abitato (Fig. 26). In particolare i dissesti più rilevanti si riscontrano lungo i versanti di M. S. Marco, dove coinvolgono la strada statale Randazzo – Capo d'Orlando, e in contrada Sulle di Murazzo Rotto.

Fig. 24 - Dissesto 096-3RD-014 in C.da Sulle di Murazzo Rotto.

Fig. 25 - Dissesto 096-3RD-009 nella periferia nord-occidentale del centro abitato.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Fig. 26 - Immagine tratta dal portale IFFI (Inventario dei Fenomeni Franosi in Italia) al sito <u>http://193.206.192.136/cartanetiffi/carto3.asp?cat=42&lang=IT#</u>).

Dato che nell'area di studio del Comune di Randazzo non viene segnalata la presenza di faglie attive e capaci, non è stata segnalata nessun tipo di area di deformazione legata a queste ultime.

Per quanto riguarda il fenomeno della liquefazione e del rischio ad esso correlato, dalla definizione riportata nel glossario degli "Indirizzi e Criteri per la Microzonazione Sismica" (Gruppo di lavoro MS, 2008) <<Fenomeno per cui, in conseguenza dell'applicazione di azioni dinamiche quali le azioni sismiche agenti in condizioni non drenate, un terreno perde la propria resistenza al taglio>>, appare chiaro che oltre alle caratteristiche litologiche e granulometriche e agli aspetti idrogeologici, in generale il fattore scatenante del fenomeno è il verificarsi di un evento sismico ad una certa distanza dal sito in oggetto, distanza che a sua volta dipende dalla Magnitudo del terremoto. A titolo di esempio si riporta la relazione empirica tra la Magnitudo e la distanza epicentrale proposta da Galli (2000)(Fig. 27):

Fig. 27 – Distribuzione di fenomeni di liquefazione indotti da eventi sismici, in termini di Magnitudo e distanza epicentrale, per i periodi 1117–1990 e 1900–1990. (da Galli, 2000).

Nell'ambito della zonazione sismogenetica dell'area italiana (Gruppo di lavoro, 2004), il territorio comunale di Randazzo ricade all'interno della zona sismogenica 932, che estendendosi dall'arcipelago eoliano centro-meridionale in direzione SE fino alle pendici settentrionali del M.te Etna (Fig. 28), è stata affetta da eventi sismici sia storici che strumentali di magnitudo medio-bassa (M = 3.5-5.0).

Nell'area di studio del territorio comunale di Randazzo, il principale fattore che determina l'assenza di rischio di liquefazione, è rappresentato dalla profondità della falda acquifera, che si mantiene al di sotto del valore critico di 15 m dal piano campagna, nonostante la presenza di terreni a prevalenza granulometrica sabbiosa. Questo dato è stato desunto

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

dai dati di sondaggi effettuati nel territorio in questione in occasione di studi a supporto del PRG, i quali, spinti fino a profondità di 30 metri dal piano campagna, non rilevano la presenza di alcuna falda acquifera.

Fig. 28 - Zone sismogenetiche per la mappa di pericolosità sismica di base di riferimento (Gruppo di lavoro, 2004).

Inoltre, nella Carta idrogeologica del massiccio vulcanico dell'Etna (Ferrara, 2001) le curve isopiezometriche, nell'area di studio si mantengono ad una profondità di circa 50 m dalla superficie (Fig. 29).

Fig. 29- Stralcio della Carta idrogeologica del massiccio vulcanico dell'Etna con le isopiezometriche (Ferrara, 2001 mod).

Conseguentemente, in mancanza di dati di dettaglio che indichino la circolazione di acque sotterranee a profondità minore di 15-20 metri, nell'area di studio non è stata definita alcuna zona soggetta a possibili fenomeni di liquefazione.

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

8. Elaborati cartografici

La sintesi delle attività svolte nel primo livello di approfondimento degli studi di microzonazione sismica si configura nella stesura dei seguenti elaborati cartografici: "Carta delle indagini", "Carta geologico tecnica per la microzonazione sismica" e "Carta delle microzone omogenee in prospettiva sismica".

8.1 Carta delle indagini

Le indagini di sottosuolo pregresse messe a disposizione dall'amministrazione comunale di Randazzo, consistono in indagini puntuali, eseguite esclusivamente in foro, cui si sommano le indagini lineari di tipo geofisico. Tutti i dati messi a disposizione, unitamente a quelli acquisiti nel corso del presente studio, sono stati analizzati, archiviati in un database di Access denominato "CdI_tabelle" e rappresentati secondo gli "Standard di rappresentazione e archiviazione informatica Versione 2.0beta-II". All'interno del database sono stati inseriti 32 "Siti_puntuali" (19 relativi a dati pregressi e 13 a misure HVSR realizzate dall'Università di Catania nel corso del presente studio).

Per quanto riguarda le "Indagini_puntuali" (v. tab. 2) sono state inserite 54 indagini appartenenti a diverse classi:

- "Geologia" a questa classe appartengono i sondaggi a carotaggio continuo, e quelli con prelievo di campioni
- "Geotecnica di in sito" si tratta di n. 9 indagini SPT (vedi Allegato 3)

"Geofisica" - consta di n. 8 indagini down-hole e n. 13 indagini HVSR (vedi
Allegati 3 e 4)

Per quanto riguarda le "Indagini_lineari" (v. tab. 2), sono state inserite n. 20 profili sismici a rifrazione. Infine, per le informazioni sulle geometrie 3D dei diversi corpi geologici nel sottosuolo, si raccomanda di fare riferimento alle sezioni geologiche realizzate nell'**Allegato 1**.

8.2 Carta geologico tecnica per la microzonazione sismica

Già ampiamente descritta nei capitoli precedenti, la successione geolitologica dell'area di studio è stata ricostruita sulla base della composizione di rilievi geologici a differente scala. Per la ricostruzione delle geometrie dei corpi lavici presenti nell'area si è dovuto ricorrere a rilievi originali per la mancanza di informazioni pregresse indispensabili. I dati di sottosuolo, molto scarsi e mal distribuiti, hanno avuto un ruolo marginale nella ricostruzione della stratigrafia delle unità riportate nella carta. I terreni lavici, seppure in gran parte poggianti su superfici di erosione modellate sul basamento pre-vulcanico, sono stati assimilati ai terreni di copertura (LC), sulla base della loro giacitura rispetto alle altre formazioni superficiali (unità di copertura) presenti nell'area. Le diverse unità litologiche del substrato, ivi comprese i prodotti lavici, e i diversi terreni di copertura sedimentaria sono state rappresentate nella carta geologico-tecnica seguendo gli "Standard di rappresentazione e archiviazione informatica-Versione 2.0beta-II". La classificazione dei terreni di copertura, descritta già in dettaglio nei capitoli precedenti, è stata eseguita secondo il sistema USCS. Si fa presente che anche laddove tali terreni non sono stati cartografati, perché di spessore inferiore ai 3 metri, il substrato geologico è sovente ricoperto da suolo di alterazione e localmente da materiali di riporto. Per i terreni vulcanici di copertura si è fatto ricorso a nuovi standard di rappresentazione concordati con la committenza, in attesa di una integrazione delle linee guida nazionali, alla quale si auspica possano utilmente contribuire gli stessi dati

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 contenuti in questo studio. In particolare, sono stati inseriti sia nuovi elementi lineari (limite di colata lavica) che elementi areali (ventaglio di lava) che insieme agli altri già previsti, consentono una visualizzazione immediata degli elementi della morfologia subvulcanica.

Con queste premesse è stato possibile ricostruire un quadro molto complesso dei terreni di copertura che inevitabilmente si traduce in un'estrema parcellizzazione delle zone con caratteri stratigrafici omogenei (successione litologica, giacitura, rapporti geometrici con il substrato), da utilizzare successivamente per la definizione delle microzone omogenee in prospettiva sismica.

La mancanza di un abaco di riferimento per i terreni vulcanici ha comportato un certo grado di indeterminazione ed arbitrarietà nella selezione degli aspetti geologici, litologici e geomorfologici significativi per la distinzione delle microzone omogenee. La scelta adottata è stata quella di suddividere le unità laviche sulla base dei loro caratteri morfologici, facilmente riconoscibili in superficie, cui comunemente si associano caratteri litologici specifici, puntualmente riscontrati in affioramento. Il risultato è una rappresentazione del sottosuolo di natura vulcanica che, pur con tutte le possibili imprecisioni, tende a riprodurre geometrie tipo in relazione all'andamento della topografia sepolta che, discostandosi dai classici schemi litostratigrafici, è apparsa, in assenza totale di dati diretti, l'unica soluzione praticabile per il raggiungimento degli obiettivi propri del primo livello di approfondimento.

8.3 Carta delle microzone omogenee in prospettiva sismica

Sulla base delle unità caratterizzate e cartografate nella carta geologico tecnica e del modello del sottosuolo (vedi Capitolo 5) è stato possibile realizzare la Carta delle microzone omogenee in prospettiva sismica. Secondo gli "Indirizzi e Criteri per la Microzonazione Sismica" (Gruppo di lavoro MS, 2008) in tale elaborato cartografico si individuano tre tipi di microzone:

- zone stabili in cui il moto sismico non viene modificato rispetto a quello atteso in condizioni ideali di roccia rigida e pianeggiante. In queste zone gli scuotimenti attesi sono equiparati a quelli forniti dagli studi di pericolosità di base;
- zone stabili suscettibili di amplificazione in cui il moto sismico viene modificato rispetto a quello atteso in condizioni ideali di roccia rigida e pianeggiante, a causa delle caratteristiche litostratigrafiche e/o morfologiche del terreno del territorio;
- 3. **zone suscettibili di instabilità** in cui sono presenti o si possono ipotizzare attivazioni di fenomeni di deformazione permanente del territorio indotti o innescati dal sisma (instabilità di versante, liquefazioni, fagliazione superficiale, cedimenti differenziali, ecc.).

I dati raccolti, non hanno consentito l'identificazione di zone stabili, in quanto in nessun luogo è stato riconosciuto un substrato affiorante con i caratteri di bedrock sismico. La notevole variabilità laterale dei terreni di copertura affioranti ha comportato la definizione di 13 distinte microzone riferite ad aree stabili suscettibili di amplificazione, nonché 2 distinte zone suscettibili di instabilità.

Una notevole varietà di microzone è stata prevista per le aree ricadenti su terreni vulcanici, per le quali non sono state ancora definite linee guida da adottare. Non è escluso che, una volta definito l'abaco di riferimento, alcune delle suddivisioni proposte possano risultare pleonastiche, non avendo riscontro in termini di risposta sismica locale differente. Ciò implica la possibilità che microzone omogenee, oggi distinte sulla base di

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

differenti caratteri stratigrafici e giaciturali, possano avere un medesimo comportamento di modificazione del moto del suolo e quindi essere successivamente accorpate in un'unica microzona omogenea. In termini più realistici, è prevedibile che l'estrema eterogeneità dei terreni vulcanici poco si presti alla definizione di una microzona a comportamento omogeneo, ma piuttosto in microzone all'interno delle quali i parametri di variazione locale del moto oscillano nell'ambito di range definiti, differenti da quelli di microzone adiacenti.

Con queste premesse, sono state distinte le sottoelencate aree stabili soggette ad amplificazione:

- Zona 1 Argille scagliose varicolori a giacitura caotica fortemente dissestabili di spessore oltre i 50 m.
- **Zona 2** Depositi alluvionali terrazzati che ricoprono un fianco di valle costituito dalle successioni della zona 1.
- **Zona 3** Lave di copertura indefinite su morfologie del substrato articolate (a) di riempimento di paleovalli sulla successione della zona 1.
- **Zona 4** Depositi alluvionali terrazzati di riempimento di paleovalli costituiti da sabbie e ghiaie che poggiano sulla successione della zona 3.
- **Zona 5** Lave di copertura indefinite su morfologie del substrato articolate (a) che ricoprono le successioni di riempimento di paleovalli sia di natura vulcanica (zona 3) che alluvionale (zona 4).
- **Zona 6** Depositi alluvionali terrazzati costituiti da sabbie e ghiaie che poggiano su più termini delle successioni vulcaniche delle zone 3 e 5.
- Zona 7 Coltri di alterazione degli orizzonti lavici delle zone 3 e 5.
- **Zona 8** Materiale di riporto eterogeneo a prevalente componente a prevalente componente vulcanica costituito da blocchi e ciottoli lavici eterometrici in matrice sabbiosa localmente limosa che ricoprono la successione delle zone 3 e 5.

- Zona 9 Materiale di riporto eterogeneo a prevalente componente vulcanica costituito da blocchi e ciottoli lavici eterometrici in matrice sabbiosa localmente limosa che ricoprono i depositi alluvionali delle zone 4 e 6
- Zona 10 Falda detritica costituita da sabbie e ghiaie che poggia sulla successione della zona 5.
- **Zona 11** Lave di copertura indefinite su morfologie del substrato articolate (a) di riempimento di paleovalli sulla successione della zona 1 in pendio con inclinazione > 15° e dislivello >30 m.
- **Zona 12** Depositi alluvionali terrazzati di riempimento di paleovalli costituiti da sabbie e ghieie che poggiano sulla successione della zona 3 in pendio con inclinazione > 15° e dislivello > 30 m.
- Zona 13 Lave di copertura indefinite su morfologie del substrato articolate (a) che ricoprono le successioni di riempimento di paleovalli sia di natura vulcanica (zona 3) che alluvionale (zona 4) in pendio con inclinazione >15° e dislivello > 30 m.

Le 2 zone di instabilità di versante attiva e quiescente, rispettivamente, comprendono le 3 aree già censite dal PAI indicate come soggette a frane di crollo e ribaltamento attive, e tutti i corpi detritici dell'area di studio poggianti sul substrato argilloso. In questi ultimi andrebbero comunque valutati anche gli effetti di amplificazione stratigrafica legati alla presenza del detrito superficiale, che si dovrebbero manifestare anche in assenza di fenomeni di instabilità.

L'**Allegato 6** fornisce un quadro completo delle zone stabili suscettibili di amplificazione mentre, per quanto riguarda le zone suscettibili di instabilità si rimanda al Capitolo 7.

9. Confronto con la distribuzione di danni per eventi passati

Il territorio comunale di Randazzo è stato interessato da diversi eventi sismici sopra la soglia del danno (I_{MCS}> V), verificatisi principalmente nel periodo pre-strumentale (Figg. 3 e 4).

Le informazioni sui danni prodotti dagli eventi passati sono state ottenute consultando il Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990 (CFTI 2 Boschi et al., 1997) e il Catalogo Macrosismico dei Terremoti Etnei (CMTE; Azzaro et al., 2000; 2006; 2009). Tra quelli principali, procedendo dal più antico al più recente, si elencano:

62

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

- Il terremoto del 9 Gennaio 1693 fu avvertito, ma non vengono segnalati danni. Il sisma dell'11 Gennaio provocò, invece, il crollo di 20 case e gravi danni alle restanti, così come agli edifici religiosi. Il Vicario generale di Camastra nella sua relazione ricorda i danni subiti da tre conventi e dalle mura della città.
- Per il terremoto del 20 Febbraio 1818, la località fu inserita nel quadro riassuntivo delle perizie, tra quelle in cui si verificarono danni generali agli edifici. Questa valutazione fu confermata dal dettagliato quadro dei danni redatto dalla locale Commissione per i terremoti, dal quale risultarono lesionati 219 edifici, 8 crollati in parte o completamente, 6 classificati come cadenti. Le scosse del Febbraio 1818 danneggiarono il monastero di S. Giorgio. Risultarono danneggiati tra chiese, monasteri e conventi 28 edifici sacri, subirono danni le carceri e la porta della muraglia di S. Pietro.

Molti altri eventi sismici hanno colpito in passato l'area del Comune di Randazzo, ma di questi non si è in possesso di documenti utili per descrivere e localizzare i danni subiti dagli edifici e da altri manufatti. In alcuni casi, le poche informazioni disponibili hanno permesso di effettuare stime sull'intensità degli eventi.

Oltre ai terremoti di elevata I(MCS) sopra descritti, l'area di studio ha risentito e risente di una sismicità propria dell'area etnea, caratterizzata da eventi di più bassa intensità ma più superficiali.

10. Bibliografia

AA.VV.; 1979 – Geological Map of Mt. Etna. 1:50.000 scale. C.N.R., Progetto Finalizzato Geodinamica, Ed. S.EL.CA, Firenze (IT).

AA.VV.; 2012 - Note illustrative Foglio Geologico 612 "Randazzo". A cura di Serafina Carbone. Ed. S.EL.CA, Firenze (IT).

Azzaro R., Barbano M.S., Antichi B., Rigano R; 2000 – Macroseismic catalogue of Mt. Etna earthquakes from 1832 to 1998. Acta Vulcanol., 12, 1–2, 3–36.

Azzaro R., Bonforte A., Branca S., Guglielmino F.; 2013 – Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). Journal of Volcanology and Geothermal Research, 251, 5–15.

Azzaro R., D'Amico S., Mostaccio A., Scarfì L., Tuvè T.; 2006 – Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2002 – Dicembre 2005. Quad. Geof., 41, 62 pp.

Azzaro R., D'Amico S., Mostaccio A., Scarfì L., Tuvè T.; 2009 – Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2006 – Dicembre 2008. Quaderni di Geofisica, 72, 39 pp.

Azzaro R., D'Amico S., Tuvè T.; 2011 – Estimate the magnitudo of historical earthquakes from macroseismic intensità data: new relationships for the volcanic region of Mount Etna (Italy). Seism. Res. Lett., 82, 4, 533–544.

Azzaro R., D'Amico S., Mostaccio A., Scarfi L., Tuvè T.; 2009 – Catalogo Macrosismico dei Terremoti Etnei dal 1832 al 1998 e Aggiornamento 2006-2008. http://www.ct.ingv.it/ufs/macro/

Bailey J.E., Harris A.J.L., Dehn J., Calvari S., Rowland S.K.; 2006 - The changing morphology of an open lava channel on Mt. Etna. Bull. Volcanol., 68, 498-515. DOI: 10.1007/s00445-005-0025-6

64

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77 Barbano, M.S.; 1985 – The Val di Noto earthquake of December 10, 1542. In: Postpischl, D. (ed.), Atlas of Isoseismal Maps of Italian Earthquakes, PFG-CNR, Quad. Ric. Scie. 2A, 114, Bologna.

Boschi E., Ferrari G., Gasperini P., Guidoboni E., Smeriglio G., Valensise G.; 1995 – Catalogo dei forti terremoti in Italia dal 461 a.c. al 1980. Istituto Nazionale di Geofisica, Roma, 973 pp.

Boschi E., Guidoboni E., Ferrari G., Valensise G., Gasperini P.; 1997 – Catalogo dei forti terremoti in Italia dal 461 a.c. al 1990. Istituto Nazionale di Geofisica, Roma, 644 pp.

Branca S., Coltelli M, Groppelli G., Lentini F.; 2011 – Geological map of Etna volcano, 1:50,000 scale. It. J. Geosci. (Boll. Soc. Geol. It.), 130 (3), 265–291.

Catalano S., De Guidi G.; 2003 - Late Quaternary uplift of northeastern Sicily: relation with the active normal faulting deformation. Journal of Geodynamics, 36, 445-467.

Catalano S., De Guidi G., Monaco C., Tortorici G., Tortorici L.; 2008. Active faulting and seismicity along the Siculo-Calabrian rift zone. Tectonophysics, 453, 177–192.

Catalano S., Tortorici G.; 2010 - La carta geologica del basso versante orientale del Monte Etna: nuovi vincoli geologici per la ricostruzione del sottosuolo. In "Microzonazione sismica del versante orientale dell'Etna. Studi di primo livello", Autori Vari. Le Nove Muse Editrice, Catania, 113-141. Ciccacci S., Fredi P., Lupia Palmieri E., Salvini F.; 1986 – An approach to the quantitative analysis of the relations between drainage pattern and fracture trend. International Geomorphology, II. Wiley & Sons, Chichester, pp. 49–68.

DISS Working Group; 2010 – Database of Individual Seismogenic Sources (DISS), Version 3.1.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, © INGV 2010 – Istituto Nazionale di Geofisica e Vulcanologia – All rights reserved.

Dolce M. e altri 15 Autori; 2011 - Contributi per l'aggiornamento degli "Indirizzi e Criteri per la Microzonazione Sismica". Ingegneria Sismica XXVIII, n.2. Supplemento alla rivista trimestrale.

Ferrara V.; 2001 - Carta idrogeologica del massiccio vulcanico dell'Etna. Ed. S.EL.CA, Firenze (IT).

Galli P.; 2000 - New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324, 169-187.

Gillot P.Y., Kieffer G., Romano R.; 1994 – The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol., 5, 81-87.

Gruppo di lavoro, 2004 – Redazione della mappa di pericolosità sismica prevista dall'Ordinanza del Presidente del Consiglio dei Ministri N. 3274 del 20/3/03. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004.

Gruppo di lavoro MS; 2008 - Indirizzi e Criteri per la Microzonazione Sismica, 3° Vol. e DVD.

Gruppo di lavoro MS; 2008 - Indirizzi e Criteri per la Microzonazione Sismica, Glossario.

Locati M., Camassi R., Stucchi M.; 2011. DBMI11, la versione 2011 del Database Macrosismico Italiano. Milano, Bologna, http://emidius.mi.ingv.it/DBMI11

66

Attuazione dell'Articolo 11 della Legge 24 giugno 2009, n.77

Meletti C., Montaldo V.; 2007 – Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni: valori di ag. Progetto DPC-INGV S1, Deliverable D2,

http://esse1.mi.ingv.it/d2.html

Meletti C., Galadini F., Valensise G., Stucchi M., Basili R., Barba S., Vannucci G., Boschi E.; 2008 – A seismic source model for the seismic hazard assessment of the Italian territory. Tectonophysics, 450(1), 85–108. DOI:10.1016/j.tecto.2008.01.003.

Monaco C., De Guidi G., Catalano S., Ferlito C., Tortorici G., Tortorici L.; 2008 - La Carta Morfotettonica del Monte Etna. Litografia Artistica Cartografica, Firenze (IT).

NTC; 2008 - Nuove Norme Tecniche per le Costruzioni. D.M. 14/01/2008. G.U. n. 29 del 04/02/2008 (Suppl. Ordinario n. 30).

Postpischl, D., 1985. Catalogo dei terremoti italiani dall'anno 1000 al 1980. CNR, P.F. Geodinamica, Graficoop Bologna, 239 pp.

Progetto Database nazionale dei Sinkholes. Consultabile presso il "Portale del Servizio Geologico d'Italia" dell'ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). http://sgi.isprambiente.it/geoportal/catalog/content/project/sinkhole.page

Progetto IFFI (banca dati inventario fenomeni franosi d'Italia). Consultabile presso il "Portale del Servizio Geologico d'Italia" dell'ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale).

http://sgi.isprambiente.it/geoportal/catalog/content/project/iffi.page

Regione Sicilia; 2004 – Piano Stralcio di bacino per l'Assetto Idrogeologico (PAI) della Regione Siciliana – Relazione generale.

http://www.sitr.regione.sicilia.it/pai/CD_PAI/RELAZIONE_GENERALE_P.A.I.pdf

Progetto ITHACA - Faglie Capaci ((ITaly HAzard from CApable faults). Consultabile presso il "Portale del Servizio Geologico d'Italia" dell'ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale).

http://sgil.isprambiente.it/geoportal/catalog/content/project/ithaca.page

Rovida A., Camassi R., Gasperini P., Stucchi M.; 2011 – CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani. Milano, Bologna.

http://emidius.mi.ingv.it/CPTI

Valensise G., Pantosti D.; 1992 – A 125 Kyr-long geological record of seismic source repeatability: the Messina Straits (southern Italy) and the 1908 earthquake (Ms 7 1/2). Terra Nova, 4, 472–483.

11. Allegati

- Allegato 1 Sezioni geologiche
- Allegato 2 Sondaggi
- Allegato 3 Dati geotecnici e geofisici
- Allegato 4 Misure di microtremore ambientale
- Allegato 5 Sezioni topografiche

Allegato 6 – Schemi dei rapporti litostratigrafici più significativi

Allegato 2 - Sondaggi

Allegato 3 – Dati geotecnici e geofisici

087038L1SR1									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	635,8	1,08 - 3,35	1,08	3,35	lave scoriacee detritiche ed alterate				
2	1385,38	indefinito	indefinito	indefinito	lave compatte mediamente fraturate				

087038L2SR2									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	539,77	1,17 - 2,33	1,17	2,33	lave scoriacee detritiche ed alterate				
2	1426,14	indefinito	indefinito	indefinito	lave compatte mediamente fraturate				

	087038L3SR3									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato					
1	449,13	2,57 - 2,60	2,57	2,6	lave scoriacee detritiche ed alterate					
2	1611,94	indefinito	indefinito	indefinito	lave compatte mediamente fraturate					

087038L4SR4									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	678,1	2,52 - 2,44	2,52	2,44	lave scoriacee detritiche ed alterate				
2	1314,77	indefinito	indefinito	indefinito	lave compatte mediamente fraturate				

087038L5SR5									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	562,5	1,4 - 1,4	1,4	1,4	lave scoriacee detritiche ed alterate				
2	946,56	3,70 - 6,24	3,7	6,24	lave compatte mediamente fraturate				
3	2556,77	indefinito	indefinito	indefinito	lave compatte poco fraturate				

Tabelle 1 – 5: Valori di velocità delle onde sismiche e relativi spessori degli strati individuati nel sottosuolo ottenuti durante la campagna di indagini geologiche svolte a supporto del "Progetto di Costruzione della Pretura".

litotipo	descrizione litotipo	PV [γ (KN/m3)]	Coesione c' [C (MPa)]	angolo di attrito interno Φ' [F1 (°)]
LC	TERRENI INCOERENTI (scorie vulcaniche di dimensioni variabili a spigoli vivi ed elevato angolo di attrito interno)	19	0	35
LC	TERRENI LAPIDEI FRATTURATI	21	0	43 - 45

Tabelle 6: Valori dei principali parametri geotecnici dei litotipi presenti nel sottosuolo investigato durante gli studi a sostegno del "Progetto di Costruzione della Pretura". Dati desunti da Letteratura Geologica.

	087038L6SR6									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato					
1	315	2,0 - 1,9	2,0	1,9	materiale di riporto					
2	657	indefinito	indefinito	indefinito	lave scoriacee					

087038L7SR7									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	301	2,0 - 1,9	2,0	1,9	materiale di riporto				
2	660	indefinito	indefinito	indefinito	lave scoriacee				

			087038L8SR8		
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato
1	320	2,0 - 1,8	2,0	1,8	materiale di riporto
2	787	indefinito	indefinito	indefinito	lave scoriacee

			087038L9SR9						
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	239	2,1 - 1,4	2,1	1,4	materiale di riporto				
2	608	indefinito	indefinito	indefinito	lave scoriacee				
	087038L10SR10								
--------	-------------------------------	--------------	---------------------	---------------------	----------------------	--	--	--	--
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	359	2,4 - 2,5	2,4	2,5	materiale di riporto				
2	800	indefinito	indefinito	indefinito	lave scoriacee				

	087038L11SR11									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato					
1	400	2,1 - 1,2	2,1	1,2	materiale di riporto					
2	901	indefinito	indefinito	indefinito	lave scoriacee					

	087038L12SR12								
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	417	1,0 - 1,5	1,0	1,5	materiale di riporto				
2	934	indefinito	indefinito	indefinito	lave scoriacee				

			087038L13SR13		
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato
1	400	2,1 - 2,6	2,1	2,6	materiale di riporto
2	1016	indefinito	indefinito	indefinito	lave scoriacee

			087038L14SR14		
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato
1	368	2,6 - 2,5	2,6	2,5	materiale di riporto
2	913	indefinito	indefinito	indefinito	lave scoriacee

			087038L15SR15		
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato
1	413	2,7 - 1,9	2,7	1,9	materiale di riporto
2	1024	indefinito	indefinito	indefinito	lave scoriacee

	087038L16SR16									
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato					
1	364	2,2 - 2,6	2,2	2,6	materiale di riporto					
2	878	indefinito	indefinito	indefinito	lave scoriacee					

	087038L17SR17								
strato	velocità onde P VP (m/sec)	spessore (m)	spessore min (m)	spessore max (m)	litotipo correlato				
1	409	2,0 - 2,7	2,0	2,7	materiale di riporto				
2	1002	indefinito	indefinito	indefinito	lave scoriacee				

Tabelle 7 – 18: Valori di velocità delle onde sismiche e relativi spessori degli strati individuati nel sottosuolo ottenuti durante la campagna di indagini geologiche svolte a supporto del "Progetto esecutivo per la riqualificazione urbana della Via Duca degli Abruzzi".

	087038P6DH1									
Profondità (m)	Spessore (m)	Litotipo	Velocità onde P [Vp (m/s)]	Velocità onde S [Vs (m/s)]	PV [kn/m ³]	Modulo di taglio [G (Mpa)]	Mdulo di Bulk [K (Mpa)]	Modulo di Young [E (Mpa)]	Coeff. Di Poisson	
0,0 - 1,50	1,50	terreno di riporto	223	71	19	8,43	80,41	24,52	0,44	
1,50 - 3,00	1,50	lave scoriacee poco addensate	473	177	19	65,41	383,54	185,54	0,42	
3,00 - 8,00	5,00	lave scoriacee addensate	896	371	19	129,89	1324,58	837,29	0,39	
8,00 - 14,00	6,00	lave compatte fratturate	1871	850	22	530,39	5408,47	4103,10	0,37	

Tabella 19: Valori di velocità di propagazione delle onde sismiche e dei principali parametri elastici del sottosuolo ottenuti durante la campagna di indagini realizzate a sostegno del "Progetto esecutivo per la riqualificazione urbana della Via Duca degli Abruzzi".

litotipo	descrizione litotipo	PV [γ (KN/m3)]	Coesione c' [C (MPa)]	angolo di attrito interno Φ' [F1 (°)]
RI	TERRENO DI RIPORTO	17 - 18	0	25 - 30
LC	LAVE SCORIACEE	18 - 19	0	30 - 35
LC	LAVE COMPATTE	20 - 22	0	≥ 40

Tabella 20: Valori dei principali parametri geotecnici dei litotipi presenti nel sottosuolo investigato durante gli studi a sostegno del "Progetto esecutivo per la riqualificazione urbana della Via Duca degli Abruzzi".

087038P14SS27										
	Profondità	Profondità	Spessore	N° colni	Nent	tipo di	presenza	litatina		
	top (m)	bottom (m)	(m)	Νιζοιρι	мэрс	punta	di falda	ποτίρο		
	2,00	2,15	0,15	10						
087038P14SPT15	2,15	2,30	0,15	10	24	scarpa	no	SW		
	2,30	2,45	0,15	14						
	3,50	3,65	0,15	15		scarpa	no	sw		
087038P14SPT16	3,65	3,80	0,15	14	30					
	3,80	3,95	0,15	16						
087038P14SPT17	5,00	5,15	0,15	12	32			SW		
	5,15	5,30	0,15	15		scarpa	no			
	5,30	5,45	0,15	17						

	087038P15SS28										
ID_INDPU	Profondità top (m)	Profondità bottom (m)	Spessore (m)	N° colpi	Nspt	tipo di punta	presenza di falda	litotipo			
	2,50	2,65	0,15	13							
087038P15SPT18	2,65	2,80	0,15	13	30	scarpa	no	SW			
	2,80	2,95	0,15	17			i presenza di falda a no a no a no				
087038P15SPT19	4,50	4,60	0,10	> 50	R	scarpa	no	SW			
087038P15SPT20	7,00	7,10	0,10	> 50	R	scarpa	no	SW			

		С	87038P16	DH26				
ID_INDPU	Profondità top (m)	Profondità bottom (m)	Spessore (m)	N° colpi	Nspt	tipo di punta	presenza di falda	litotipo
	2,00	2,15	0,15	13				
087038P16SPT21	2,15	2,30	0,15	17	25	scarpa	no	SW
	2,30	2,45	0,15	8				
087038P16SPT22	4,60	4,65	0,05	> 50	R	scarpa	no	SW
	7,00	7,15	0,15	10				
087038P16SPT23	7,15	7,30	0,15	18	38	scarpa	no	SW
	7,30	7,45	0,15	20				

Tabelle 21 – 23: Valori di "Nspt" ottenuti nei diversi intervalli di profondità investigati durante la campagna di indagini realizzate a sostegno del "Progetto dei lavori della nuova sede dislocamento dei vigili del fuoco".

087038	P14SS27	087038	P15SS28	087038	P16SS29		
profondità	R.O.D. (%)	profondità	R.O.D. (%)	profondità	R.O.D. (%)	intervallo %	stato di fratturazione
(m)		(m)		(m)		0 - 25	molto fratturata
11,5 - 14,5	55					25 - 50	fratturata
14,5 - 16,0	100	12,5 - 15,0	45			50 - 75	mediamente fratturata
16,0 - 19,0	95	15,0 - 18,0	90	13,5 - 16,0	50	75 - 90	poco fratturata
19,0 - 20,0	100	18,0 - 20,0	95	16,0 - 20,0	90	90 - 100	integra

Tabella 24: Valori di RQD ottenuti durante l'esecuzione di sondaggi geognostici realizzati durante la campagna di indagini a supporto del "Progetto dei lavori della nuova sede dislocamento dei vigili del fuoco".

				087038P:	14DH24		
strato	Profondità top (m)	Profondità bottom (m)	spessore (m)	Velocità onde P [Vp (m/s)]	Velocità onde S [Vs (m/s)]	Descrizione litotipo	litotipo
1	0,0	2,0	2,0	297	141	suolo costituito da sabbie vulcaniche debolmente limose	РТ
2	2,0	5,5	3,5	754	360	piroclastiti costituite da sabbie e ceneri vulcaniche	SW
3	5,5	13,5	8,0	1310	667	lave scoriacee e lave fratturate	LC
4	13,5	20,0	6,5	1946	944	lave massive	LC

				087038P:	15DH25		
strato	Profondità top (m)	Profondità bottom (m)	spessore (m)	Velocità onde P [Vp (m/s)]	Velocità onde S [Vs (m/s)]	Descrizione litotipo	litotipo
1	0,0	2,0	2,0	211	106	suolo costituito da sabbie vulcaniche debolmente limose	РТ
2	2,0	5,5	3,5	754	360	piroclastiti costituite da sabbie e ceneri vulcaniche	SW
3	5,5	13,5	8,0	1483	720	lave scoriacee e lave fratturate	LC
4	13,5	20,0	6,5	1959	913	lave massive	LC

				087038P3	16DH26		
strato	Profondità top (m)	Profondità bottom (m)	spessore (m)	Velocità onde P [Vp (m/s)]	Velocità onde S [Vs (m/s)]	Descrizione litotipo	litotipo
1	0,0	2,0	2,0	210	106	suolo costituito da sabbie vulcaniche debolmente limose	РТ
2	2,0	5,5	3,5	754	381	piroclastiti costituite da sabbie e ceneri vulcaniche	SW
3	5,5	13,5	8,0	1635	887	lave scoriacee e lave fratturate	LC
4	13,5	20,0	6,5	1961	981	lave massive	LC

Tabelle 25 – 27: Valori di velocità di propagazione delle onde sismiche e degli spessori investigati in sottosuolo ottenuti durante la campagna di indagini realizzate a supporto del "Progetto dei lavori della nuova sede dislocamento dei vigili del fuoco".

	ID_INDPU: 087038P13DH2											
Profondità (m)	spessore (m)	Tp [msec]	Ts [msec]	Tp corretto	Ts corretto	Velocità onde P [Vp(m/s)]	Velocità onde S [Vs(m/s)]	PV [KN/m ³]	Modulo di taglio [G (Mpa)]	Mdulo di Bulk [K (Mpa)]	Modulo di Young [E (Mpa)]	Coeff. Di Poisson
1,0	1,0	4,68	9,87	3,31	6,98	302	143	18,00	36,2	117,68	98	0,355
2,0	1,0	6,50	13,95	5,81	12,48	399	182	18,00	58,8	205,94	156,9	0,369
3,0	1,0	7,84	16,98	7,44	16,11	616	275	18,00	137,3	490,33	372,7	0,375
4,0	1,0	8,62	18,78	8,36	18,22	1081	474	18,00	392,3	1569,06	1078,7	0,381
5,0	1,0	9,35	20,35	9,17	19,95	1241	576	18,00	588,4	1961,33	1569	0,363
6,0	1,0	10,53	22,65	10,39	22,34	821	419	18,00	313,8	774,72	823,8	0,324
7,0	1,0	11,61	24,87	11,49	24,62	904	439	18,00	343,2	980,66	912	0,346
8,0	1,0	12,84	27,32	12,74	27,11	802	402	18,00	284,4	755,11	755	0,332
9,0	1,0	13,90	29,45	13,81	29,27	931	463	18,00	382,5	980,66	980,7	0,336
10,0	1,0	14,91	31,65	14,84	31,49	979	450	18,00	353	1176,80	980,7	0,366
11,0	1,0	15,84	33,56	15,77	33,42	1065	518	18,00	470,7	1372,93	1274,9	0,345
12,0	1,0	16,81	35,64	16,75	35,52	1024	477	18,00	402	1274,86	1078,7	0,361
13,0	1,0	17,64	37,33	17,59	37,22	1196	587	18,00	608	1667,13	1667,1	0,341
14,0	1,0	18,21	38,45	18,16	38,35	1737	883	18,00	1372,9	3530,39	3628,5	0,326
15,0	1,0	19,01	40,21	18,97	40,12	1244	565	18,00	568,8	1961,33	1569,1	0,37
16,0	1,0	19,63	41,42	19,59	41,34	1603	821	18,00	1176,8	2941,99	3138,1	0,322
17,0	1,0	20,20	42,50	20,17	42,43	1744	920	18,00	1470,9	3334,26	3922,7	0,307
18,0	1,0	20,71	43,45	20,68	43,38	1949	1046	22,00	2353,6	5099,46	6080,1	0,298
19,0	1,0	21,21	44,38	21,18	44,32	1990	1069	22,00	2451,6	5295,59	6374,3	0,297
20,0	1,0	21,68	45,30	21,65	45,24	2117	1081	22,00	2549,7	6276,26	6668,5	0,324
21,0	1,0	22,11	46,11	22,08	46,06	2315	1228	22,00	3236,2	7256,92	8531,8	0,304
22,0	1,0	22,61	47,09	22,59	47,04	1993	1017	22,00	2255,5	5589,79	5884	0,324
23,0	1,0	23,05	47,90	23,03	47,85	2265	1229	22,00	3236,2	6668,52	8433,7	0,291
24,0	1,0	23,54	48,84	23,52	48,80	2035	1061	22,00	2451,6	5687,86	6374,3	0,314
25,0	1,0	23,98	49,65	23,96	49,61	2266	1231	22,00	3236,2	6766,59	8433,7	0,291
26,0	1,0	24,42	50,49	24,40	50,45	2267	1187	22,00	3040	7060,79	7943,4	0,311
27,0	1,0	24,97	51,52	24,95	51,48	1815	969	22,00	2059,4	4412,99	5295,6	0,301
28,0	1,0	25,45	52,47	25,43	52,44	2079	1051	22,00	2353,6	6178,19	6374,3	0,329
29,0	1,0	26,02	53,60	26,00	53,57	1752	884	18,00	1372,9	3628,46	3628,5	0,329
30,0	1,0	26,87	55,32	26,86	55,29	1176	581	18,00	598,2	1667,13	1569	0,338

	ID_INDPU: 087038P10DH3											
Profondità (m)	spessore (m)	Tp [msec]	Ts [msec]	Tp corretto	Ts corretto	Velocità onde P [Vp(m/s)]	Velocità onde S [Vs(m/s)]	PV [KN/m ³]	Modulo di taglio [G (Mpa)]	Mdulo di Bulk [K (Mpa)]	Modulo di Young [E (Mpa)]	Coeff. Di Poisson
1,0	1,0	6,21	12,41	4,39	8,78	228	114	18,00	22,6	60,80	60,8	0,333
2,0	1,0	7,25	14,60	6,48	13,06	478	233	18,00	96,1	274,59	255	0,343
3,0	1,0	8,25	16,84	7,83	15,98	745	343	18,00	205,9	706,08	568,9	0,366
4,0	1,0	9,13	18,70	8,86	18,14	970	462	18,00	372,7	1176,80	980,7	0,354
5,0	1,0	10,45	21,50	10,25	21,08	719	340	18,00	205,9	637,43	549,2	0,356
6,0	1,0	11,76	24,05	11,60	23,72	741	379	18,00	255	627,63	666,9	0,323
7,0	1,0	12,78	26,23	12,65	25,97	949	446	18,00	353	1078,73	951,3	0,359
8,0	1,0	13,87	28,41	13,76	28,19	900	450	18,00	353	9512,45	951,3	0,334
9,0	1,0	14,78	31,21	14,69	30,03	1079	545	18,00	519,8	1372,93	1372,9	0,329
10,0	1,0	15,78	32,34	15,70	32,18	988	464	18,00	382,5	1176,80	1078,7	0,358
11,0	1,0	16,78	34,45	16,71	34,31	991	470	18,00	392,3	1176,80	1078,7	0,355
12,0	1,0	17,50	35,83	17,44	35,71	1373	715	18,00	902,2	2157,46	2353,6	0,314
13,0	1,0	18,40	37,60	18,35	37,49	1103	561	18,00	559	1372,93	1471	0,326
14,0	1,0	19,23	39,23	19,18	39,13	1197	609	18,00	657,1	1667,13	1765,2	0,325
15,0	1,0	20,03	40,87	19,99	40,78	1243	606	18,00	647,2	1863,26	1765,2	0,344
16,0	1,0	20,56	41,87	20,52	41,79	1872	991	22,00	2157,5	4707,19	5491,7	0,305
17,0	1,0	21,11	42,89	21,07	42,82	1806	973	22,00	2059,4	4314,93	5295,6	0,295
18,0	1,0	21,55	43,74	21,52	43,67	2256	1167	22,00	2942	7060,79	7747,3	0,317
19,0	1,0	21,98	44,54	21,95	44,48	2311	1241	22,00	3334,3	7060,79	8629,9	0,297
20,0	1,0	22,56	45,66	22,53	45,60	1718	889	22,00	1667,1	4118,79	4511,1	0,317
21,0	1,0	23,00	46,49	22,97	46,44	2262	1199	22,00	3138,1	6864,65	8041,5	0,305
22,0	1,0	23,54	47,49	23,52	47,44	1846	996	22,00	2157,5	4511,06	5589,8	0,294
23,0	1,0	24,11	48,59	24,09	48,54	1750	907	22,00	1765,2	4216,86	4707,2	0,317
24,0	1,0	24,67	49,65	24,65	49,61	1781	941	22,00	1863,3	4314,93	5001,4	0,307
25,0	1,0	25,05	50,36	25,03	50,32	2622	1403	22,00	4216,9	9218,25	10787,3	0,299
26,0	1,0	25,45	51,11	25,43	51,07	2492	1329	22,00	3824,6	8335,65	9806,7	0,301
27,0	1,0	25,82	51,83	25,80	51,79	2695	1385	22,00	4118,8	9806,65	10787,3	0,321
28,0	1,0	26,23	52,60	26,21	52,57	2433	1295	22,00	3628,5	7943,39	9414,4	0,302
29,0	1,0	26,76	53,60	26,74	53,57	1884	998	22,00	2157,5	4805,26	5589,8	0,305
30,0	1,0	27,22	54,60	27,20	54,57	2170	998	22,00	2157,5	7256,92	5884	0,366

					ID_INDP	U: 087038	P12DH4					
Profondità (m)	spessore (m)	Tp [msec]	Ts [msec]	Tp corretto	Ts corretto	Velocità onde P [Vp(m/s)]	Velocità onde S [Vs(m/s)]	PV [KN/m ³]	Modulo di taglio [G (Mpa)]	Mdulo di Bulk [K (Mpa)]	Modulo di Young [E (Mpa)]	Coeff. Di Poisson
1,0	1,0	3,11	7,01	2,20	4,96	455	202	19,00	75,5	284,39	205,9	0,377
2,0	1,0	4,06	10,21	3,63	9,13	699	240	19,00	107,9	764,92	304	0,434
3,0	1,0	5,15	13,21	4,89	12,53	796	294	19,00	156,9	961,05	460,9	0,421
4,0	1,0	6,27	16,31	6,08	15,82	836	304	19,00	176,5	1078,73	490,3	0,424
5,0	1,0	7,70	19,88	7,55	19,49	681	272	19,00	137,3	676,66	392,3	0,405
6,0	1,0	8,77	23,00	8,65	22,69	912	313	19,00	186,3	1274,86	519,8	0,433
7,0	1,0	9,34	24,77	9,25	24,52	1669	545	19,00	549,2	4412,99	1569,1	0,44
8,0	1,0	9,98	26,74	9,90	26,53	1523	497	19,00	460,9	3726,53	1372,9	0,44
9,0	1,0	10,55	28,45	10,49	28,28	1717	574	19,00	617,8	4707,19	1765,2	0,437
10,0	1,0	11,21	30,41	11,15	30,26	1495	504	19,00	470,7	3530,39	1372,9	0,436
11,0	1,0	11,89	32,35	11,84	32,22	1456	511	19,00	490,3	3334,26	1372,9	0,43
12,0	1,0	12,56	34,33	12,52	34,21	1481	501	19,00	470,7	3432,33	1372,9	0,435
13,0	1,0	13,10	35,87	13,06	35,76	1836	644	19,00	774,7	5295,59	2255,5	0,43
14,0	1,0	13,65	37,66	13,62	37,56	1805	556	19,00	578,6	5295,59	1667,1	0,448
15,0	1,0	14,11	39,00	14,08	38,91	2158	741	19,00	980,7	7354,99	2942	0,433
16,0	1,0	14,56	40,32	14,53	40,24	2208	753	19,00	1078,7	7649,19	3040,1	0,434
17,0	1,0	15,04	41,75	15,01	41,68	2073	696	19,00	902,2	6766,59	2549,7	0,436
18,0	1,0	15,54	43,00	15,52	42,93	1992	796	19,00	1176,8	5785,92	3334,3	0,405
19,0	1,0	16,03	44,40	16,01	44,34	2033	712	19,00	941,4	6472,39	2745,9	0,43
20,0	1,0	16,43	45,50	16,41	45,44	2490	905	19,00	1569	9512,45	4314,9	0,424
21,0	1,0	16,87	46,87	16,85	46,82	2265	728	19,00	980,7	8237,59	2843,9	0,442
22,0	1,0	17,26	48,00	17,24	47,95	2556	882	19,00	1471	9806,65	4118,8	0,432
23,0	1,0	17,69	49,33	17,67	49,28	2320	750	19,00	1078,7	8629,85	3040,1	0,442
24,0	1,0	18,16	50,87	18,14	50,83	2123	648	19,00	784,5	7354,99	2255,5	0,449
25,0	1,0	18,67	52,54	18,66	52,50	1958	598	19,00	666,9	6276,26	1961,3	0,449
26,0	1,0	19,11	53,87	19,10	53,83	2269	751	19,00	1078,7	8237,59	3040,1	0,439
27,0	1,0	19,56	55,21	19,55	55,17	2219	745	19,00	1078,7	7747,25	2942	0,436
28,0	1,0	20,02	56,45	20,01	56,41	2171	805	19,00	1176,8	7158,85	3432,3	0,42
29,0	1,0	20,45	57,68	20,44	57,65	2322	812	19,00	1274,8	8433,72	3530,4	0,43
30,0	1,0	20,92	58,93	20,91	58,90	2125	799	19,00	1176,8	6864,66	3334,3	0,418

					ID_INDP	U: 087038	P11DH5					
Profondità (m)	spessore (m)	Tp [msec]	Ts [msec]	Tp corretto	Ts corretto	Velocità onde P [Vp(m/s)]	Velocità onde S [Vs(m/s)]	PV [KN/m ³]	Modulo di taglio [G (Mpa)]	Mdulo di Bulk [K (Mpa)]	Modulo di Young [E (Mpa)]	Coeff. Di Poisson
1,0	1,0	2,98	7,21	2,11	5,10	475	196	20,00	75,5	343,23	205,9	0,397
2,0	1,0	4,60	11,67	4,11	10,44	499	187	20,00	68,6	392,27	196,1	0,418
3,0	1,0	5,81	15,50	5,52	14,70	712	234	20,00	107,9	853,18	313,8	0,439
4,0	1,0	6,73	17,21	6,53	16,70	987	502	20,00	490,3	1274,86	1274,9	0,325
5,0	1,0	7,43	19,00	7,29	18,63	1322	517	20,00	519,8	2745,86	1471	0,41
6,0	1,0	8,03	20,72	7,92	20,44	1575	553	20,00	598,2	4020,73	1765,2	0,43
7,0	1,0	8,58	22,65	8,49	22,42	1745	504	20,00	500,1	5295,59	1471	0,455
8,0	1,0	9,12	24,66	9,05	24,47	1799	488	20,00	470,7	5687,86	1372,9	0,46
9,0	1,0	9,76	26,42	9,70	26,26	1537	559	20,00	617,8	3824,59	1765,2	0,424
10,0	1,0	10,34	28,12	10,29	27,98	1700	581	20,00	657	4805,26	1863,3	0,434
11,0	1,0	10,96	29,89	10,91	29,77	1597	560	20,00	617,8	4216,86	1765,2	0,43
12,0	1,0	11,54	31,53	11,50	31,42	1709	605	20,00	715,9	4805,26	2059,4	0,428
13,0	1,0	12,11	33,08	12,07	32,98	1742	640	20,00	804,1	4903,33	2255,5	0,422
14,0	1,0	12,67	34,65	12,64	34,56	1775	633	20,00	784,5	5099,46	2255,5	0,427
15,0	1,0	13,31	36,31	13,28	36,23	1556	600	20,00	706,1	3824,59	1961,3	0,413
16,0	1,0	13,98	38,11	13,95	38,04	1488	554	20,00	598,2	3530,39	1667,1	0,42
17,0	1,0	14,74	40,32	14,71	40,25	1313	452	20,00	402,1	2843,93	1176,8	0,433
18,0	1,0	15,38	42,54	15,36	42,27	1558	450	20,00	392,3	4216,86	1176,8	0,455
19,0	1,0	16,08	44,87	16,06	44,81	1426	429	20,00	362,8	3530,39	1078,7	0,45
20,0	1,0	16,70	46,74	16,68	46,68	1609	534	20,00	559	4314,93	1569,1	0,438
21,0	1,0	17,25	48,32	17,23	48,27	1814	631	20,00	784,5	5393,66	2255,5	0,431
22,0	1,0	17,83	50,03	17,81	49,98	1721	584	20,00	666,9	4903,33	1961,3	0,435
23,0	1,0	18,35	51,47	18,33	51,42	1919	693	20,00	941,4	5982,06	2647,8	0,425
24,0	1,0	18,90	53,00	18,88	52,95	1815	652	20,00	833,6	5393,66	2353,6	0,426
25,0	1,0	19,42	54,42	19,40	54,38	1920	703	20,00	970,9	5982,06	2745,9	0,423
26,0	1,0	19,91	55,76	19,90	55,72	2037	745	20,00	1078,7	6668,52	3138,1	0,423
27,0	1,0	20,41	57,22	20,40	57,18	1997	684	20,00	921,8	6570,46	2647,8	0,434
28,0	1,0	20,95	58,60	20,94	58,56	1850	724	20,00	980,7	5295,59	2942	0,41
29,0	1,0	21,45	59,83	21,44	59,79	1998	812	20,00	1274,9	6080,12	3628,5	0,401
30,0	1,0	21,98	61,34	21,97	61,31	1885	662	20,00	863	5785,92	2451,7	0,43

Tabelle 28 – 31: Valori di variazione della velocità delle onde sismiche e dei principali parametri elastici del sottosuolo ottenuti attraverso la campagna di indagini realizzate a supporto del "Progetto di revisione del PRG del Comune di Randazzo".

Allegato 4 – Misure di microtremore ambientale

Nell'ambito degli studi per la riduzione del rischio sismico, l'approccio numerico fornisce un ulteriore strumento d'indagine. Per risposta sismica locale (od effetto di sito), dal punto di vista strettamente fisico, si intende l'insieme delle modifiche in termini di ampiezza, durata, contenuto in frequenza e direzione di propagazione che le onde sismiche subiscono nella parte finale del loro viaggio dalla sorgente alla superficie attraversando gli strati di terreno sovrastanti una formazione rocciosa di base ed attribuibili alle caratteristiche topografiche e geotecniche degli stessi depositi superficiali. La rappresentazione del moto sismico può essere espressa sia nel dominio del tempo che in quello delle frequenze. I parametri più frequentemente utilizzati, nel dominio temporale, per descrivere le caratteristiche di un terremoto sono il valore massimo (o di picco) di accelerazione (o velocità o spostamento) e la durata definibili attraverso un accelerogramma.

La tecnica più utilizzata per stimare la risposta sismica di un sito in termini di frequenza fondamentale e amplificazione, è quella dei rapporti spettrali orizzontali e verticali HVSR di Nakamura (Langston, 1979; Nakamura, 1989). Per lo studio degli effetti di sito si usano i rapporti spettrali H/V tra le componenti orizzontali (N, E) e la componente verticale (Z) di ogni stazione (Nakamura, 1989), questa procedura permette di eliminare gli effetti dovuti alla sorgente. Le principali assunzioni fatte da Nakamura sono che i microtremori derivano da onde Rayleigh e che la componente verticale (V) del noise nel passare dal bedrock alla superficie non subisce amplificazione. Nel dominio delle frequenze, l'amplificazione del suolo dovuta ad una superficie di strato a bassa velocità è data da:

$$H(f) = [hn(f)2 + hu(f)2]\frac{1}{2}$$

Il segnale sismico di sollecitazione (noise ambientale), è dato da vibrazioni a basso contenuto energetico indotte nel terreno da cause naturali o artificiali.

Lo studio sugli effetti di sito fornisce, in chiave di spettro di risposta locale, il comportamento dei terreni del sito investigato in caso di sisma e, dal confronto con gli spettri di riferimento dell'EC8 (1988), si può verificare quali frequenze vengono notevolmente amplificate per una determinata classe di terreni.

Con l'utilizzo della tecnica di Nakamura, si è in grado di determinare con buona approssimazione la frequenza fondamentale del sito, la quale è un parametro da non sottovalutare per non incorrere in problemi di risonanza con la struttura da edificare.

Come accennato, la tecnica HVSR permette in primo luogo di valutare la frequenza di vibrazione naturale di un sito. Le ipotesi alla base della tecnica sono: una concentrazione del contenuto in frequenza localizzato maggiormente in quelle basse (tipicamente al di sotto dei 20 Hz); assenza di sorgenti periodiche e/o con contenuto in alte frequenze; le sorgenti di rumore sono uniformemente distribuite intorno alla stazione di registrazione. Se queste condizioni sono soddisfatte, la tecnica può essere suddivisa nelle fasi che vengono di seguito illustrate.

Si esegue una registrazione del rumore ambientale lungo tre direzioni ortogonali tra loro (x,y,z) con una singola stazione. Tale registrazione deve essere effettuate, secondo le indicazioni del progetto SESAME, per una durata non inferiore ai 20 minuti.

Si esegue un'operazione detta di windowing, in cui le tre tracce registrate vengono suddivise in finestre temporali di prefissata durata. Secondo le indicazioni del succitato progetto SESAME tale dimensione, detta Long Period, deve essere almeno pari ai 20 secondi. Si ottiene così un insieme di finestre "long", che sono sincronizzate fra le tracce.

Queste finestre vengono filtrate in base a dei criteri che permettono di individuare l'eventuale presenza di transienti (disturbi temporanei con grandi contributi nelle frequenze alte) o di fenomeni di saturazione.

Per ciascuna delle finestre rimanenti, quindi ritenute valide, viene valutato lo spettro di Fourier. Quest'ultimo viene sottoposto a tapering e/o lisciamento secondo una delle varie tecniche note in letteratura e ritenute all'uopo idonee.

Successivamente si prendono in considerazione gli spettri delle finestre relative alle tracce orizzontali in coppia. Ovvero, ogni spettro di una finestra per esempio della direzione X, ha il suo corrispettivo per le finestre nella direzione Y, vale a dire che sono relative a finestre temporali sincrone. Per ognuna di queste coppie viene eseguita una somma tra le componenti in frequenza secondo un determinato criterio che può essere, ad esempio, una semplice media aritmetica o una somma euclidea.

Per ciascuna coppia di cui sopra, esiste lo spettro nella direzione verticale Z, ovvero relativo alla finestra temporale sincrona a quelle della coppia. Ogni componente in frequenza di questo spettro viene usato come denominatore nel rapporto con quello della suddetta coppia. Questo permette quindi di ottenere il ricercato rapporto spettrale H/V per tutti gli intervalli temporali in cui viene suddivisa la registrazione durante l'operazione di windowing. Eseguendo per ciascuna frequenza di tali rapporti spettrali una media sulle varie finestre, si ottiene il rapporto spettrale H/V medio, la cui frequenza di picco (frequenza in cui è localizzato il massimo valore assunto dal rapporto medio stesso) rappresenta la stima della frequenza naturale di vibrazione del sito.

Le registrazioni del Noise ambientale sono state effettuate con un Geofono 3D (N-S, E-W e verticale) della CGE a 2Hz collegato ad un Sismografo DaQlink III della Sesmic Source (Made in USA) con convertitore A/D a 24 bit e range dinamico fino a 144 dB. Il segnale è stato acquisito con un campionamento di 1200 s (20 min), intervallo di 1,00 msec e frequenza di campionamento di 500 hz, ovvero, per un totale di 600.000 campioni. Tutte le misure sono state eseguite mantenendo il primo asse nella direzione N-S per garantire l'omogeneità della "direzionalità" degli input.

L'elaborazione del dato è stata eseguita utilizzando il software EasyHVSR della Geostru, software sviluppato secondo quanto previsto secondo nelle indicazioni del progetto di ricerca europeo SESAME ("Guidelines for the implementation of the $H\setminus V$ spectral ratio technique on ambient vibrations" – European Commission, 2004).

Operativamente l'elaborazione è stata confinata in un range di frequenze 0.6 - 20 Hz, con un passo di frequenza a 0.15 Hz e con una dimensione temporale finestre di

20.00 s; il segnale sismico è stato filtrato con un lisciamento di tipo "Triangolare proporzionale" con una percentuale di del 10%, mentre la somma direzionale è di tipo media aritmetica.

Nell'area da investigare del comune di Randazzo in vista dello studio di Microzonazione sismica di I Livello, sono state eseguite 13 misure di noise, presentate di seguito nella *Tabella 1*. La maggior parte dei valori della frequenza di picco ricade all'interno di un range molto ristretto, compreso tra 0.9 e ~2 Hz, anche se in diverse indagini sono state osservate ulteriori amplificazioni a più alte frequenze (fino a 13.55 Hz). I valori di amplificazione sono abbastanza contenuti, ad eccezione dell'indagine 087038P27, dove è stato osservato un rapporto H/V pari a 6.15 (Figura 1). E' da notare, inoltre, che su 13 misure per ben quattro volte sono state registrate amplificazioni esattamente alla stessa frequenza (0,95 Hz).

ID_SPU	Nome	UTMx	UTMy	Fo	H₀/V₀	F ₁	H ₁ /V ₁
087038P20	1	495532	4192425	1,25	2,22	3,2	3,06
087038P21	2	495263	4192488	2,15	3,39		
087038P22	3	496009	4192695	0,95	3,58	1,7	4,78
087038P23	4	496752	4192396	1,5	2,15	4,95	2,95
087038P24	5	496379	4192027	1,7	4,3		
087038P25	6	496157	4191550	1,05	2,62		
087038P26	7	495704	4191862	0,95	1,46	13,55	3,89
087038P27	8	495145	4191904	0,95	2,08	5,45	6,15
087038P28	9	495002	4192076	0,95	1,59	2	1,88
087038P29	10	493599	4191714	0,65	2,81	17,9	4,76
087038P30	11	493582	4191444	1,15	4,58		
087038P31	12	493004	4190964	0,9	2,11	5,1	3,41
087038P32	13	495745	4192116	1,05	3,78		

Tab.	1	-	Siti	di	misura	а	stazione	singola	dei	microtremori	ricadenti	nell'area	di	studio	del	comune	di
Rand	az	zo															

Grafico rapporto spettrale H/V

Fig. 1 – Serie Temporale e Rapporto Spettrale H/V relativo all'indagine 087038P27 a Randazzo, per la quale è stata osservata un'amplificazione pari a 6.15.

L'ubicazione dei siti di misura è stata impiegata per la redazione della carta delle frequenze allegata (Figura 2).

Fig. 2 – Esempio di due siti di misura HVSR presenti nella carta delle frequenze allegata, mostrante i valori di frequenza ed ampiezza dei picchi significativi (due in questo caso).

Per l'area investigata del territorio del comune di Randazzo, l'esito dei test statistici (linee guida SESAME, 2004) evidenzia che per la quasi totalità delle misure effettuate vengono soddisfatti i criteri di bontà d'esecuzione, analisi ed affidabilità (esempio in Figura 3). Solamente all'indagine 087038P27, che non soddisfa appieno i criteri della tabella SESAME "Criteri di affidabilità della curva H\V" (esempio in Figura 4), è stato attribuito un valore di attendibilità dell'indagine pari a "3".

Criteri di affidabilità della curva H/V									
Verifica	Limiti o range	Esito							
$f_0 > 10/l_w$	6.41 > 0.50	SI							
$n_c(f_0) > 200$	10121.9 > 200	SI							
$ \begin{aligned} \sigma_{A}(f) &< 2 per \ 0.5 \cdot f_0 < f < 2 \cdot f_0 \ se \ f_0 > 0.5H; \\ \sigma_{A}(f) &< 3 per \ 0.5 \cdot f_0 < f < 2 \cdot f_0 \ se \ f_0 < 0.5H; \end{aligned} $	z z	SI							
$\exists f^- \in [f_0/4, f_0] A_{H/V}(f^-) < A_0/2$	5.0 Hz	SI							
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid \mathcal{A}_{H/V}(f^+) < \mathcal{A}_0/2$	7.25 Hz	SI							
$A_0 > 2$	6.07 > 2	SI							
$f_{picco}[A_{H/V}(f)\pm\sigma_{A}(f)]=f_{0}\pm5\%$	27576 < 0.05	SI							
$\sigma_f < \varepsilon(f)$	1.76657 < 0.32031	SI							
$\sigma_{\!A}(f_0) < \theta(f_0)$	0.9346 < 1.58	SI							

Lw	window length
Dw	number of windows used in the analysis
nc = Lw nw fo	number of significant cycles
f	current frequency
fo	H/V peak frequency
GT	standard deviation of H/V peak frequency
s(fo)	threshold value for the stability condition σr < ε(fo)
Ao	H/V peak amplitude at frequency fo
AHV(f)	H/V curve amplitude at frequency f
f-	frequency between fo/4 and fo for which AHN(f -) < Ao/2
f+	frequency between fo and 4fo for which AHV(f+) < Ao/2
GA(f)	standard deviation of AHV(f), GA(f) is the factor by which the mean AHV(f) curve should be multiplied or divided
σiegH/V(f)	standard deviation of log AH/v(f) curve
$\theta(fo)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Valori di soglia per of e oA(f0)				
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(fc) [Hz]	0.25 fo	0.2 fo	0.15 fo	0.10 fo	0.05 fo
θ(fo) per σʌ(fo)	3.0	2.5	2.0	1.78	1.58
log θ(fa) per σιοgΗ/ν(fa)	0.48	0.40	0.30	0.25	0.20

Fig. 3 – Tabelle dei criteri di affidabilità della curva H\V relativi all'indagine 087038P27 di Randazzo i cui requisiti vengono tutti soddisfatti.

Criteri di affidabilità d	lella curva H/V	
Verifica	Limiti o range	Esito
$f_{\rm D}$ $>$ 10/ $l_{\rm W}$	6.41 > 0.50	SI
$n_c(f_0) > 200$	10121.9 > 200	SI
$\begin{array}{ll} \sigma_{\rm A}(f) < 2 & per \ 0.5 \cdot f_0 < f < 2 \cdot f_0 \ se \ f_0 > 0.5 Hz \\ \sigma_{\rm A}(f) < 3 & per \ 0.5 \cdot f_0 < f < 2 \cdot f_0 \ se \ f_0 < 0.5 Hz \end{array}$		SI
$\exists f^- \in [f_0/4, f_0] A_{H/V}(f^-) < A_0/2$	5.0 Hz	Non superato
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid A_{H/V}(f^+) < A_0/2$	7.25 Hz	SI
$A_{c} > 2$	6.07 > 2	Non superato
$f_{plcco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	27576 < 0.05	Non superato
$\sigma_f < \varepsilon(f)$	1.76657 < 0.32031	Non superato
$\sigma_{\!A}(f_0) < \theta(f_0)$	0.9346 < 1.58	SI

Lw	window length
Dw	number of windows used in the analysis
nc = Lw nw fo	number of significant cycles
f	current frequency
fo	H/V peak frequency
σt	standard deviation of H/V peak frequency
s(fo)	threshold value for the stability condition σr < s(fo)
Ac	H/V peak amplitude at frequency fo
AH _V (f)	H/V curve amplitude at frequency f
f -	frequency between fo/4 and fo for which AHV(f -) < Ao/2
f+	frequency between fo and 4fo for which AHV(f+) < Ao/2
GA(f)	standard deviation of AHV(f), GA(f) is the factor by which the mean AHV(f) curve should be multiplied or divided
GlogH/V(f)	standard deviation of log AHV(f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Valori di soglia per of e oA(f0)					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(fo) [Hz]	0.25 fo	0.2 fo	0.15 fo	0.10 fo	0.05 fo
θ(fo) per σʌ(fo)	3.0	2.5	2.0	1.78	1.58
log θ(fa) per σιορΗν(fa)	0.48	0.40	0.30	0.25	0.20

Fig. 4 – Tabelle dei criteri di affidabilità della curva H\V relativi all'indagine 087038P28 di Randazzo i cui requisiti non vengono soddisfatti.

Bibliografia

Langston C. A.; 1979 - Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res., 84, 4749-4762.

Nakamura Y.; 1989 – A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q.R.Railway Tech. Res. Inst., 30, 25–33.

SESAME Working Group (2004) - Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. http://sesamefp5.obs.ujf-grenoble.fr/index.htm.

Allegato 5 – Sezioni topografiche

Scala 1:5000

Allegato 6 – Schemi dei rapporti litostratigrafici più significativi

Zone stabili suscettibili di amplificazioni locali

Zona 6

Depositi alluvionali terrazzati costituiti da sabbie e ghiaie che poggiano su più termini delle succession vulcaniche delle zone 3 e 5.

Zona 7

Coltri di alterazione degli orizzonti lavici delle zone 3 e 5.

Zona 13

Lave di copertura indefinite su morfologie del substrato articolate (a) che ricoprono le successioni sia di natura vulcanica (zona 3) che alluvionale (zona 4) in pendio con inclinazione >15° e dislivello >30 m.